Compare commits
33 Commits
d4ee457d74
...
tyler
Author | SHA1 | Date | |
---|---|---|---|
95d2854548 | |||
2430047d45 | |||
834e415f11 | |||
733a41a35c | |||
ed3467b213 | |||
0f178fcfa9 | |||
0bfff52fd0 | |||
8e90e8b71e | |||
566d6ae518 | |||
2ec367f203 | |||
a04cb9a6ad | |||
2111a47411 | |||
11c1332757 | |||
aaf4adcf06 | |||
b6ad54f40a | |||
2f3d16dbc5 | |||
150e2d638e | |||
0c7c176bae | |||
c3d4f1b1ff | |||
57ab59d342 | |||
71ae54930c | |||
3466a984ac | |||
cbf6b1d3eb | |||
e2ce397118 | |||
9a7cd118b3 | |||
7a60a672d4 | |||
419285487a | |||
09722507c6 | |||
41317301bf | |||
00a2eb63bc | |||
6c8f779294 | |||
ff5c7506ff | |||
5c51acc8d1 |
@ -1,9 +1,13 @@
|
||||
DATABASE_URL="file:../dev.db" # SQLite database relative to the ./prisma path
|
||||
PLEROMA_INSTANCE_URL="https://instance.tld" # Pleroma instance full URL including scheme
|
||||
PLEROMA_INSTANCE_DOMAIN="instance.tld" # used if you want to only want to respond to people from a particular instance
|
||||
ONLY_LOCAL_REPLIES="true" # reply to only users locally on your instance
|
||||
PLEROMA_ACCOUNT_ID="" # obtained from /api/v1/accounts/{nickname} - used so we don't spam mentions when not directly addressed
|
||||
REPLY_WITH_CONTEXT="" # set to true or false whether you want the bot to fetch context or not
|
||||
ONLY_WHITELIST="true" # change to "false" if you want to accept prompts from any and all domains - *** USE WITH CAUTION ***
|
||||
WHITELISTED_DOMAINS="" # comma separated list of domains you want to allow the bot to accept prompts from (i.e. poa.st,nicecrew.digital,detroitriotcity.com,decayable.ink)
|
||||
OLLAMA_URL="http://localhost:11434" # OLLAMA connection URL
|
||||
OLLAMA_SYSTEM_PROMPT="" # system prompt - used to help tune the responses from the AI
|
||||
OLLAMA_MODEL="" # Ollama model for responses e.g dolphin-mistral:latest
|
||||
FETCH_INTERVAL="" # interval for fetching new notifications from the instance, in milliseconds, recommend at least 15000
|
||||
RANDOM_POST_INTERVAL="" # interval for ad-hoc posts in milliseconds
|
||||
INSTANCE_BEARER_TOKEN="" # instance auth/bearer token (check the "verify_credentials" endpoint request headers in Chrome DevTools if on Soapbox)
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -4,5 +4,6 @@ node_modules
|
||||
*.log
|
||||
*.db
|
||||
/dist
|
||||
screenlog*
|
||||
|
||||
/generated/prisma
|
||||
|
@ -8,8 +8,6 @@
|
||||
6. Run `npx prisma migrate dev --name init`
|
||||
7. To start, run `npm run start`
|
||||
|
||||
I recommend using `screen` to run this in the background until a `systemd` service can be created. I just haven't bothered to do it yet.
|
||||
|
||||
### Database Migrations
|
||||
|
||||
If you add stuff to the schema, follow the [Prisma development workflow](https://www.prisma.io/docs/orm/prisma-migrate/workflows/development-and-production). This will apply the new schema to the database and generate a new Prisma client with type safety.
|
||||
|
13
package-lock.json
generated
13
package-lock.json
generated
@ -1,21 +1,21 @@
|
||||
{
|
||||
"name": "pleroma-ollama-bot",
|
||||
"version": "1.0.0",
|
||||
"version": "1.0.5",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "pleroma-ollama-bot",
|
||||
"version": "1.0.0",
|
||||
"version": "1.0.5",
|
||||
"dependencies": {
|
||||
"@prisma/client": "^6.10.1",
|
||||
"@types/node": "^24.0.5",
|
||||
"dotenv": "^17.0.0",
|
||||
"striptags": "^3.2.0",
|
||||
"ts-node": "^10.9.2",
|
||||
"typescript": "^5.8.3"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^24.0.10",
|
||||
"@types/ws": "^8.18.1",
|
||||
"prisma": "^6.10.1"
|
||||
}
|
||||
@ -164,10 +164,9 @@
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/@types/node": {
|
||||
"version": "24.0.5",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-24.0.5.tgz",
|
||||
"integrity": "sha512-CXEG9E7GCTOZIre0WdDznmnhvF7xi7AmnP/zF496trmLiqlfdtxp9nPRgLVqfmJ8jgtcKcs0EcvOu2yDZSuvTg==",
|
||||
"license": "MIT",
|
||||
"version": "24.0.10",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-24.0.10.tgz",
|
||||
"integrity": "sha512-ENHwaH+JIRTDIEEbDK6QSQntAYGtbvdDXnMXnZaZ6k13Du1dPMmprkEHIL7ok2Wl2aZevetwTAb5S+7yIF+enA==",
|
||||
"dependencies": {
|
||||
"undici-types": "~7.8.0"
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "pleroma-ollama-bot",
|
||||
"version": "1.0.5",
|
||||
"version": "1.1.0",
|
||||
"main": "index.js",
|
||||
"scripts": {
|
||||
"start": "tsc && node -r dotenv/config dist/main.js",
|
||||
@ -9,16 +9,16 @@
|
||||
"type": "module",
|
||||
"keywords": [],
|
||||
"author": "NiceCrew",
|
||||
"description": "A simple bot that responds to activities from Pleroma instances using Ollama's API.",
|
||||
"description": "A simple bot that responds to activities from Pleroma instances using Ollama's API at a configurable interval.",
|
||||
"dependencies": {
|
||||
"@prisma/client": "^6.10.1",
|
||||
"@types/node": "^24.0.5",
|
||||
"dotenv": "^17.0.0",
|
||||
"striptags": "^3.2.0",
|
||||
"ts-node": "^10.9.2",
|
||||
"typescript": "^5.8.3"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^24.0.10",
|
||||
"@types/ws": "^8.18.1",
|
||||
"prisma": "^6.10.1"
|
||||
}
|
||||
|
@ -0,0 +1,19 @@
|
||||
-- RedefineTables
|
||||
PRAGMA defer_foreign_keys=ON;
|
||||
PRAGMA foreign_keys=OFF;
|
||||
CREATE TABLE "new_Response" (
|
||||
"id" INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
|
||||
"pleromaNotificationId" TEXT NOT NULL DEFAULT 'null',
|
||||
"to" TEXT NOT NULL DEFAULT 'null',
|
||||
"request" TEXT NOT NULL DEFAULT 'null',
|
||||
"response" TEXT NOT NULL DEFAULT 'null',
|
||||
"createdAt" DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"processedAt" DATETIME,
|
||||
"isProcessing" BOOLEAN NOT NULL DEFAULT true,
|
||||
"isComplete" BOOLEAN NOT NULL DEFAULT true
|
||||
);
|
||||
INSERT INTO "new_Response" ("createdAt", "id", "isProcessing", "pleromaNotificationId", "processedAt", "request", "response", "to") SELECT "createdAt", "id", "isProcessing", "pleromaNotificationId", "processedAt", "request", "response", "to" FROM "Response";
|
||||
DROP TABLE "Response";
|
||||
ALTER TABLE "new_Response" RENAME TO "Response";
|
||||
PRAGMA foreign_keys=ON;
|
||||
PRAGMA defer_foreign_keys=OFF;
|
@ -20,10 +20,56 @@ model Response {
|
||||
createdAt DateTime @default(now())
|
||||
processedAt DateTime?
|
||||
isProcessing Boolean @default(true)
|
||||
isComplete Boolean @default(true)
|
||||
}
|
||||
|
||||
model User {
|
||||
id Int @id @default(autoincrement())
|
||||
userFqn String @unique
|
||||
lastRespondedTo DateTime?
|
||||
memory UserMemory?
|
||||
}
|
||||
|
||||
model Reaction {
|
||||
id Int @id @default(autoincrement())
|
||||
statusId String // The Pleroma status ID we reacted to
|
||||
emojiName String // The emoji we used to react
|
||||
reactedAt DateTime @default(now())
|
||||
createdAt DateTime @default(now())
|
||||
|
||||
@@unique([statusId]) // Prevent multiple reactions to same status
|
||||
@@map("reactions")
|
||||
}
|
||||
|
||||
model UserMemory {
|
||||
id Int @id @default(autoincrement())
|
||||
userFqn String @unique
|
||||
personalityTraits String @default("[]") // JSON string of personality observations
|
||||
runningGags String @default("[]") // JSON string of running jokes/gags
|
||||
relationships String @default("[]") // JSON string of relationship dynamics with bot
|
||||
interests String @default("[]") // JSON string of user interests
|
||||
backstory String @default("[]") // JSON string of biographical elements
|
||||
lastInteractionSummary String? // Brief summary of last chat
|
||||
interactionCount Int @default(0)
|
||||
lastUpdated DateTime @default(now()) @updatedAt
|
||||
createdAt DateTime @default(now())
|
||||
|
||||
// Relation to existing User model
|
||||
user User @relation(fields: [userFqn], references: [userFqn])
|
||||
|
||||
@@map("user_memories")
|
||||
}
|
||||
|
||||
model InteractionLog {
|
||||
id Int @id @default(autoincrement())
|
||||
userFqn String
|
||||
conversationSnapshot String // Key parts of the conversation
|
||||
sentiment String // positive, negative, teasing, etc.
|
||||
extractedTopics String @default("[]") // JSON string of topics discussed
|
||||
memorableQuotes String @default("[]") // JSON string of funny/notable quotes
|
||||
botEmotionalState String? // How the bot should "feel" about this interaction
|
||||
createdAt DateTime @default(now())
|
||||
|
||||
@@map("interaction_logs")
|
||||
@@index([userFqn, createdAt])
|
||||
}
|
437
src/api.ts
Normal file
437
src/api.ts
Normal file
@ -0,0 +1,437 @@
|
||||
import { envConfig, prisma } from "./main.js";
|
||||
import { PleromaEmoji, Notification, ContextResponse } from "../types.js";
|
||||
import { selectRandomEmojis } from "./util.js";
|
||||
import { getUserMemory, parseJsonArray, stringifyJsonArray } from "./memory.js";
|
||||
|
||||
|
||||
|
||||
const getNotifications = async () => {
|
||||
const { bearerToken, pleromaInstanceUrl } = envConfig;
|
||||
try {
|
||||
const request = await fetch(
|
||||
`${pleromaInstanceUrl}/api/v1/notifications?types[]=mention`,
|
||||
{
|
||||
method: "GET",
|
||||
headers: {
|
||||
Authorization: `Bearer ${bearerToken}`,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
const notifications: Notification[] = await request.json();
|
||||
|
||||
return notifications;
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
const getStatusContext = async (statusId: string) => {
|
||||
const { bearerToken, pleromaInstanceUrl } = envConfig;
|
||||
try {
|
||||
const response = await fetch(
|
||||
`${pleromaInstanceUrl}/api/v1/statuses/${statusId}/context`,
|
||||
{
|
||||
method: "GET",
|
||||
headers: {
|
||||
Authorization: `Bearer ${bearerToken}`,
|
||||
},
|
||||
}
|
||||
);
|
||||
if (!response.ok) {
|
||||
throw new Error(
|
||||
`Could not get conversation context: ${response.status} - ${response.statusText}`
|
||||
);
|
||||
}
|
||||
const data: ContextResponse = await response.json();
|
||||
return data;
|
||||
} catch (error: unknown) {
|
||||
if (error instanceof Error) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const getInstanceEmojis = async () => {
|
||||
const { bearerToken, pleromaInstanceUrl } = envConfig;
|
||||
try {
|
||||
const request = await fetch(`${pleromaInstanceUrl}/api/v1/pleroma/emoji`, {
|
||||
method: "GET",
|
||||
headers: {
|
||||
Authorization: `Bearer ${bearerToken}`,
|
||||
},
|
||||
});
|
||||
if (!request.ok) {
|
||||
console.error(`Emoji GET failed: ${request.status}`);
|
||||
return;
|
||||
}
|
||||
const emojis: PleromaEmoji[] = await request.json();
|
||||
return Object.keys(emojis);
|
||||
} catch (error: any) {
|
||||
console.error(`Could not fetch emojis: ${error.message}`);
|
||||
}
|
||||
};
|
||||
|
||||
const deleteNotification = async (notification: Notification) => {
|
||||
const { pleromaInstanceUrl, bearerToken } = envConfig;
|
||||
try {
|
||||
if (!notification.id) {
|
||||
return;
|
||||
}
|
||||
await prisma.response.updateMany({
|
||||
// this is probably not the best way to do this, but since we may have duplicate notifications, we have to update all of them - probably won't scale (lmao)
|
||||
where: { pleromaNotificationId: notification.id },
|
||||
data: { isProcessing: false },
|
||||
});
|
||||
const response = await fetch(
|
||||
`${pleromaInstanceUrl}/api/v1/notifications/${notification.id}/dismiss`,
|
||||
{
|
||||
method: "POST",
|
||||
headers: {
|
||||
Authorization: `Bearer ${bearerToken}`,
|
||||
},
|
||||
}
|
||||
);
|
||||
if (!response.ok) {
|
||||
console.error(
|
||||
`Could not delete notification ID: ${notification.id}\nReason: ${response.status} - ${response.statusText}`
|
||||
);
|
||||
}
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* React to a status with a random emoji
|
||||
*/
|
||||
const reactToStatus = async (statusId: string, emojiName: string): Promise<boolean> => {
|
||||
const { bearerToken, pleromaInstanceUrl } = envConfig;
|
||||
|
||||
try {
|
||||
const response = await fetch(
|
||||
`${pleromaInstanceUrl}/api/v1/statuses/${statusId}/react/${emojiName}`,
|
||||
{
|
||||
method: "PUT",
|
||||
headers: {
|
||||
Authorization: `Bearer ${bearerToken}`,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
if (!response.ok) {
|
||||
console.error(`Failed to react to status ${statusId}: ${response.status} - ${response.statusText}`);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
} catch (error: any) {
|
||||
console.error(`Error reacting to status ${statusId}: ${error.message}`);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Check if we've already reacted to a status
|
||||
*/
|
||||
const hasAlreadyReacted = async (statusId: string): Promise<boolean> => {
|
||||
try {
|
||||
const reaction = await prisma.reaction.findFirst({
|
||||
where: { statusId: statusId },
|
||||
});
|
||||
return !!reaction;
|
||||
} catch (error: any) {
|
||||
console.error(`Error checking reaction status: ${error.message}`);
|
||||
return true; // Assume we've reacted to avoid spamming on error
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Record that we've reacted to a status
|
||||
*/
|
||||
const recordReaction = async (statusId: string, emojiName: string): Promise<void> => {
|
||||
try {
|
||||
await prisma.reaction.create({
|
||||
data: {
|
||||
statusId: statusId,
|
||||
emojiName: emojiName,
|
||||
reactedAt: new Date(),
|
||||
},
|
||||
});
|
||||
} catch (error: any) {
|
||||
console.error(`Error recording reaction: ${error.message}`);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Decide whether to react to a post (not every post gets a reaction)
|
||||
*/
|
||||
const shouldReactToPost = (): boolean => {
|
||||
// React to roughly 30% of posts
|
||||
return Math.random() < 0.3;
|
||||
};
|
||||
|
||||
/**
|
||||
* Get appropriate reaction emojis based on content sentiment/keywords
|
||||
*/
|
||||
const getContextualEmoji = (content: string, availableEmojis: string[]): string => {
|
||||
const contentLower = content.toLowerCase();
|
||||
|
||||
// Define emoji categories with keywords
|
||||
const emojiCategories = {
|
||||
positive: ['happy', 'smile', 'joy', 'love', 'heart', 'thumbsup', 'fire', 'based'],
|
||||
negative: ['sad', 'cry', 'angry', 'rage', 'disappointed', 'cringe'],
|
||||
thinking: ['think', 'hmm', 'brain', 'smart', 'curious'],
|
||||
laughing: ['laugh', 'lol', 'kek', 'funny', 'haha', 'rofl'],
|
||||
agreement: ['yes', 'agree', 'nod', 'correct', 'true', 'based'],
|
||||
surprise: ['wow', 'amazing', 'surprised', 'shock', 'omg'],
|
||||
};
|
||||
|
||||
// Keywords that might indicate sentiment
|
||||
const sentimentKeywords = {
|
||||
positive: ['good', 'great', 'awesome', 'nice', 'love', 'happy', 'excellent', 'perfect'],
|
||||
negative: ['bad', 'terrible', 'hate', 'awful', 'horrible', 'worst', 'sucks'],
|
||||
funny: ['lol', 'haha', 'funny', 'hilarious', 'joke', 'meme'],
|
||||
question: ['?', 'what', 'how', 'why', 'when', 'where'],
|
||||
agreement: ['yes', 'exactly', 'true', 'right', 'correct', 'agree'],
|
||||
thinking: ['think', 'consider', 'maybe', 'perhaps', 'hmm', 'interesting'],
|
||||
};
|
||||
|
||||
// Check content sentiment and find matching emojis
|
||||
for (const [sentiment, keywords] of Object.entries(sentimentKeywords)) {
|
||||
if (keywords.some(keyword => contentLower.includes(keyword))) {
|
||||
const categoryEmojis = emojiCategories[sentiment as keyof typeof emojiCategories];
|
||||
if (categoryEmojis) {
|
||||
const matchingEmojis = availableEmojis.filter(emoji =>
|
||||
categoryEmojis.some(cat => emoji.toLowerCase().includes(cat))
|
||||
);
|
||||
if (matchingEmojis.length > 0) {
|
||||
return matchingEmojis[Math.floor(Math.random() * matchingEmojis.length)];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Fallback to random emoji from a curated list of common reactions
|
||||
const commonReactions = availableEmojis.filter(emoji =>
|
||||
['heart', 'thumbsup', 'fire', 'kek', 'based', 'think', 'smile', 'laugh']
|
||||
.some(common => emoji.toLowerCase().includes(common))
|
||||
);
|
||||
|
||||
if (commonReactions.length > 0) {
|
||||
return commonReactions[Math.floor(Math.random() * commonReactions.length)];
|
||||
}
|
||||
|
||||
// Final fallback to any random emoji
|
||||
return availableEmojis[Math.floor(Math.random() * availableEmojis.length)];
|
||||
};
|
||||
|
||||
/**
|
||||
* Main function to handle post reactions
|
||||
*/
|
||||
const handlePostReaction = async (notification: Notification): Promise<void> => {
|
||||
try {
|
||||
const statusId = notification.status.id;
|
||||
|
||||
// Check if we should react to this post
|
||||
if (!shouldReactToPost()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if we've already reacted
|
||||
if (await hasAlreadyReacted(statusId)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Get available emojis
|
||||
const emojiList = await getInstanceEmojis();
|
||||
if (!emojiList || emojiList.length === 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Select a smaller random pool for reactions (5-10 emojis)
|
||||
const reactionPool = selectRandomEmojis(emojiList, 8);
|
||||
|
||||
// Get contextual emoji based on post content
|
||||
const selectedEmoji = getContextualEmoji(
|
||||
notification.status.pleroma.content["text/plain"],
|
||||
reactionPool
|
||||
);
|
||||
|
||||
// React to the post
|
||||
const success = await reactToStatus(statusId, selectedEmoji);
|
||||
|
||||
if (success) {
|
||||
await recordReaction(statusId, selectedEmoji);
|
||||
console.log(`Reacted to status ${statusId} with :${selectedEmoji}:`);
|
||||
}
|
||||
|
||||
} catch (error: any) {
|
||||
console.error(`Error handling post reaction: ${error.message}`);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Get detailed user memory for admin/debugging
|
||||
*/
|
||||
const getUserMemoryDetails = async (userFqn: string) => {
|
||||
try {
|
||||
const memory = await prisma.userMemory.findUnique({
|
||||
where: { userFqn: userFqn },
|
||||
include: {
|
||||
user: true
|
||||
}
|
||||
});
|
||||
|
||||
if (!memory) return null;
|
||||
|
||||
// Get recent interaction logs
|
||||
const recentLogs = await prisma.interactionLog.findMany({
|
||||
where: { userFqn: userFqn },
|
||||
orderBy: { createdAt: 'desc' },
|
||||
take: 10
|
||||
});
|
||||
|
||||
// Parse JSON strings for better readability
|
||||
const parsedMemory = {
|
||||
...memory,
|
||||
personalityTraits: parseJsonArray(memory.personalityTraits),
|
||||
runningGags: parseJsonArray(memory.runningGags),
|
||||
relationships: parseJsonArray(memory.relationships),
|
||||
interests: parseJsonArray(memory.interests),
|
||||
backstory: parseJsonArray(memory.backstory),
|
||||
recentInteractions: recentLogs.map(log => ({
|
||||
...log,
|
||||
extractedTopics: parseJsonArray(log.extractedTopics),
|
||||
memorableQuotes: parseJsonArray(log.memorableQuotes)
|
||||
}))
|
||||
};
|
||||
|
||||
return parsedMemory;
|
||||
} catch (error: any) {
|
||||
console.error(`Error getting user memory details: ${error.message}`);
|
||||
return null;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Manually add or remove memory elements (for admin use)
|
||||
*/
|
||||
const modifyUserMemory = async (
|
||||
userFqn: string,
|
||||
action: 'add' | 'remove',
|
||||
category: 'personalityTraits' | 'runningGags' | 'relationships' | 'interests' | 'backstory',
|
||||
item: string
|
||||
) => {
|
||||
try {
|
||||
const memory = await getUserMemory(userFqn);
|
||||
if (!memory) return false;
|
||||
|
||||
const currentArray = parseJsonArray(memory[category] as string);
|
||||
let updatedArray: string[];
|
||||
|
||||
if (action === 'add') {
|
||||
updatedArray = [...new Set([...currentArray, item])]; // Add without duplicates
|
||||
} else {
|
||||
updatedArray = currentArray.filter(existingItem => existingItem !== item);
|
||||
}
|
||||
|
||||
await prisma.userMemory.update({
|
||||
where: { userFqn: userFqn },
|
||||
data: { [category]: stringifyJsonArray(updatedArray) }
|
||||
});
|
||||
|
||||
console.log(`${action === 'add' ? 'Added' : 'Removed'} "${item}" ${action === 'add' ? 'to' : 'from'} ${category} for ${userFqn}`);
|
||||
return true;
|
||||
} catch (error: any) {
|
||||
console.error(`Error modifying user memory: ${error.message}`);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
const getMemoryStats = async () => {
|
||||
try {
|
||||
const totalUsers = await prisma.userMemory.count();
|
||||
const totalInteractions = await prisma.interactionLog.count();
|
||||
|
||||
const mostActiveUsers = await prisma.userMemory.findMany({
|
||||
orderBy: { interactionCount: 'desc' },
|
||||
take: 10,
|
||||
select: {
|
||||
userFqn: true,
|
||||
interactionCount: true,
|
||||
personalityTraits: true,
|
||||
runningGags: true
|
||||
}
|
||||
});
|
||||
|
||||
// Parse JSON strings for the active users
|
||||
const parsedActiveUsers = mostActiveUsers.map(user => ({
|
||||
...user,
|
||||
personalityTraits: parseJsonArray(user.personalityTraits),
|
||||
runningGags: parseJsonArray(user.runningGags)
|
||||
}));
|
||||
|
||||
const sentimentStats = await prisma.interactionLog.groupBy({
|
||||
by: ['sentiment'],
|
||||
_count: { sentiment: true }
|
||||
});
|
||||
|
||||
return {
|
||||
totalUsers,
|
||||
totalInteractions,
|
||||
mostActiveUsers: parsedActiveUsers,
|
||||
sentimentDistribution: sentimentStats
|
||||
};
|
||||
} catch (error: any) {
|
||||
console.error(`Error getting memory stats: ${error.message}`);
|
||||
return null;
|
||||
}
|
||||
};
|
||||
|
||||
const resetUserMemory = async (userFqn: string) => {
|
||||
try {
|
||||
await prisma.userMemory.update({
|
||||
where: { userFqn: userFqn },
|
||||
data: {
|
||||
personalityTraits: stringifyJsonArray([]),
|
||||
runningGags: stringifyJsonArray([]),
|
||||
relationships: stringifyJsonArray([]),
|
||||
interests: stringifyJsonArray([]),
|
||||
backstory: stringifyJsonArray([]),
|
||||
lastInteractionSummary: null,
|
||||
interactionCount: 0,
|
||||
}
|
||||
});
|
||||
|
||||
// Optionally delete interaction logs too
|
||||
await prisma.interactionLog.deleteMany({
|
||||
where: { userFqn: userFqn }
|
||||
});
|
||||
|
||||
console.log(`Reset memory for ${userFqn}`);
|
||||
return true;
|
||||
} catch (error: any) {
|
||||
console.error(`Error resetting user memory: ${error.message}`);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
export {
|
||||
deleteNotification,
|
||||
getInstanceEmojis,
|
||||
getNotifications,
|
||||
getStatusContext,
|
||||
reactToStatus,
|
||||
handlePostReaction,
|
||||
hasAlreadyReacted,
|
||||
getUserMemoryDetails,
|
||||
modifyUserMemory,
|
||||
getMemoryStats,
|
||||
resetUserMemory,
|
||||
};
|
411
src/main.ts
411
src/main.ts
@ -1,121 +1,88 @@
|
||||
import {
|
||||
OllamaRequest,
|
||||
OllamaResponse,
|
||||
NewStatusBody,
|
||||
Notification,
|
||||
OllamaConfigOptions,
|
||||
OllamaChatRequest,
|
||||
OllamaChatResponse,
|
||||
PostAncestorsForModel,
|
||||
} from "../types.js";
|
||||
import striptags from "striptags";
|
||||
// import striptags from "striptags";
|
||||
import { PrismaClient } from "../generated/prisma/client.js";
|
||||
import {
|
||||
getInstanceEmojis,
|
||||
deleteNotification,
|
||||
getNotifications,
|
||||
getStatusContext,
|
||||
handlePostReaction,
|
||||
} from "./api.js";
|
||||
import { storeUserData, storePromptData } from "./prisma.js";
|
||||
import {
|
||||
isFromWhitelistedDomain,
|
||||
alreadyRespondedTo,
|
||||
recordPendingResponse,
|
||||
// trimInputData,
|
||||
// selectRandomEmoji,
|
||||
selectRandomEmojis,
|
||||
isLLMRefusal,
|
||||
shouldContinue,
|
||||
processConversationHistory,
|
||||
} from "./util.js";
|
||||
import {
|
||||
analyzeInteraction,
|
||||
updateUserMemory,
|
||||
generateMemoryContext,
|
||||
} from "./memory.js";
|
||||
|
||||
const prisma = new PrismaClient();
|
||||
export const prisma = new PrismaClient();
|
||||
|
||||
const getNotifications = async () => {
|
||||
try {
|
||||
const request = await fetch(
|
||||
`${process.env.PLEROMA_INSTANCE_URL}/api/v1/notifications?types[]=mention`,
|
||||
{
|
||||
method: "GET",
|
||||
headers: {
|
||||
Authorization: `Bearer ${process.env.INSTANCE_BEARER_TOKEN}`,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
const notifications: Notification[] = await request.json();
|
||||
|
||||
return notifications;
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
export const envConfig = {
|
||||
pleromaInstanceUrl: process.env.PLEROMA_INSTANCE_URL || "",
|
||||
pleromaInstanceDomain: process.env.PLEROMA_INSTANCE_DOMAIN || "",
|
||||
whitelistOnly: process.env.ONLY_WHITELIST === "true" ? true : false,
|
||||
whitelistedDomains: process.env.WHITELISTED_DOMAINS
|
||||
? process.env.WHITELISTED_DOMAINS.split(",")
|
||||
: [process.env.PLEROMA_INSTANCE_DOMAIN],
|
||||
ollamaUrl: process.env.OLLAMA_URL || "",
|
||||
ollamaSystemPrompt: process.env.OLLAMA_SYSTEM_PROMPT,
|
||||
ollamaModel: process.env.OLLAMA_MODEL || "",
|
||||
fetchInterval: process.env.FETCH_INTERVAL
|
||||
? parseInt(process.env.FETCH_INTERVAL)
|
||||
: 15000,
|
||||
bearerToken: process.env.INSTANCE_BEARER_TOKEN || "",
|
||||
adHocPostInterval: process.env.RANDOM_POST_INTERVAL
|
||||
? parseInt(process.env.RANDOM_POST_INTERVAL)
|
||||
: 3600000,
|
||||
botAccountId: process.env.PLEROMA_ACCOUNT_ID,
|
||||
replyWithContext: process.env.REPLY_WITH_CONTEXT === "true" ? true : false,
|
||||
};
|
||||
|
||||
const storeUserData = async (notification: Notification): Promise<void> => {
|
||||
try {
|
||||
await prisma.user.upsert({
|
||||
where: { userFqn: notification.status.account.fqn },
|
||||
update: {
|
||||
lastRespondedTo: new Date(Date.now()),
|
||||
},
|
||||
create: {
|
||||
userFqn: notification.status.account.fqn,
|
||||
lastRespondedTo: new Date(Date.now()),
|
||||
},
|
||||
});
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
const ollamaConfig: OllamaConfigOptions = {
|
||||
temperature: 0.6,
|
||||
top_p: 0.85,
|
||||
top_k: 40,
|
||||
num_ctx: 8192,
|
||||
repeat_penalty: 1.1,
|
||||
};
|
||||
|
||||
const alreadyRespondedTo = async (
|
||||
notification: Notification
|
||||
): Promise<boolean> => {
|
||||
try {
|
||||
const duplicate = await prisma.response.findFirst({
|
||||
where: { pleromaNotificationId: notification.id, isProcessing: true },
|
||||
});
|
||||
if (duplicate) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
const storePromptData = async (
|
||||
notification: Notification,
|
||||
ollamaResponseBody: OllamaResponse
|
||||
) => {
|
||||
try {
|
||||
await prisma.response.updateMany({
|
||||
where: { pleromaNotificationId: notification.id },
|
||||
data: {
|
||||
response: ollamaResponseBody.response,
|
||||
request: trimInputData(notification.status.content),
|
||||
to: notification.account.fqn,
|
||||
isProcessing: false,
|
||||
},
|
||||
});
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
const trimInputData = (input: string) => {
|
||||
const strippedInput = striptags(input);
|
||||
const split = strippedInput.split(" ");
|
||||
const promptStringIndex = split.indexOf("!prompt");
|
||||
return split.slice(promptStringIndex + 1).join(" "); // returns everything after the !prompt
|
||||
};
|
||||
|
||||
const recordPendingResponse = async (notification: Notification) => {
|
||||
try {
|
||||
await prisma.response.create({
|
||||
data: {
|
||||
pleromaNotificationId: notification.id,
|
||||
},
|
||||
});
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
// this could be helpful
|
||||
// https://replicate.com/blog/how-to-prompt-llama
|
||||
|
||||
const generateOllamaRequest = async (
|
||||
notification: Notification
|
||||
): Promise<OllamaResponse | undefined> => {
|
||||
notification: Notification,
|
||||
retryAttempt: number = 0
|
||||
): Promise<OllamaChatResponse | undefined> => {
|
||||
const {
|
||||
whitelistOnly,
|
||||
ollamaModel,
|
||||
ollamaSystemPrompt,
|
||||
ollamaUrl,
|
||||
replyWithContext,
|
||||
} = envConfig;
|
||||
|
||||
try {
|
||||
if (
|
||||
striptags(notification.status.content).includes("!prompt") &&
|
||||
!notification.status.account.bot && // sanity check, sort of
|
||||
notification.type === "mention"
|
||||
) {
|
||||
if (
|
||||
process.env.ONLY_LOCAL_REPLIES === "true" &&
|
||||
!notification.status.account.fqn.includes(
|
||||
`@${process.env.PLEROMA_INSTANCE_DOMAIN}`
|
||||
)
|
||||
) {
|
||||
if (shouldContinue(notification)) {
|
||||
if (whitelistOnly && !isFromWhitelistedDomain(notification)) {
|
||||
await deleteNotification(notification);
|
||||
return;
|
||||
}
|
||||
if (await alreadyRespondedTo(notification)) {
|
||||
@ -123,24 +90,81 @@ const generateOllamaRequest = async (
|
||||
}
|
||||
await recordPendingResponse(notification);
|
||||
await storeUserData(notification);
|
||||
const ollamaConfig: OllamaConfigOptions = {
|
||||
temperature: 1.2,
|
||||
num_predict: 400,
|
||||
|
||||
const userFqn = notification.status.account.fqn;
|
||||
const userMessage = notification.status.pleroma.content["text/plain"];
|
||||
|
||||
let conversationHistory: PostAncestorsForModel[] = [];
|
||||
let processedContext = "";
|
||||
|
||||
if (replyWithContext) {
|
||||
const contextPosts = await getStatusContext(notification.status.id);
|
||||
if (!contextPosts?.ancestors || !contextPosts) {
|
||||
throw new Error(`Unable to obtain post context ancestors.`);
|
||||
}
|
||||
conversationHistory = contextPosts.ancestors.map((ancestor) => {
|
||||
const mentions = ancestor.mentions.map((mention) => mention.acct);
|
||||
return {
|
||||
account_fqn: ancestor.account.fqn,
|
||||
mentions,
|
||||
plaintext_content: ancestor.pleroma.content["text/plain"],
|
||||
};
|
||||
});
|
||||
|
||||
// Process context - summarize if too long
|
||||
processedContext = await processConversationHistory(conversationHistory);
|
||||
}
|
||||
|
||||
const formattedUserMessage = `${userFqn} says: ${userMessage}`;
|
||||
|
||||
// Get user memory context
|
||||
const memoryContext = await generateMemoryContext(userFqn);
|
||||
|
||||
// Get random emojis for this request
|
||||
const emojiList = await getInstanceEmojis();
|
||||
let availableEmojis = "";
|
||||
if (emojiList && emojiList.length > 0) {
|
||||
const randomEmojis = selectRandomEmojis(emojiList, 20);
|
||||
availableEmojis = `\n\nAvailable custom emojis you can use in your response (format as :emoji_name:): ${randomEmojis.join(", ")}`;
|
||||
}
|
||||
|
||||
let systemContent = ollamaSystemPrompt + memoryContext + availableEmojis;
|
||||
|
||||
if (replyWithContext) {
|
||||
systemContent = `${ollamaSystemPrompt}${memoryContext}\n\nPrevious conversation context:\n${processedContext}\nReply as if you are a party to the conversation. If '@nice-ai' is mentioned, respond directly. Prefix usernames with '@' when addressing them.${availableEmojis}`;
|
||||
}
|
||||
|
||||
// Use different seeds for retry attempts
|
||||
const currentConfig = {
|
||||
...ollamaConfig,
|
||||
seed: retryAttempt > 0 ? Math.floor(Math.random() * 1000000) : ollamaConfig.seed,
|
||||
};
|
||||
const ollamaRequestBody: OllamaRequest = {
|
||||
model: process.env.OLLAMA_MODEL as string,
|
||||
system: process.env.OLLAMA_SYSTEM_PROMPT as string,
|
||||
prompt: `@${notification.status.account.fqn} says: ${trimInputData(
|
||||
notification.status.content
|
||||
)}`,
|
||||
|
||||
const ollamaRequestBody: OllamaChatRequest = {
|
||||
model: ollamaModel,
|
||||
messages: [
|
||||
{ role: "system", content: systemContent as string },
|
||||
{ role: "user", content: formattedUserMessage },
|
||||
],
|
||||
stream: false,
|
||||
options: ollamaConfig,
|
||||
options: currentConfig,
|
||||
};
|
||||
const response = await fetch(`${process.env.OLLAMA_URL}/api/generate`, {
|
||||
|
||||
const response = await fetch(`${ollamaUrl}/api/chat`, {
|
||||
method: "POST",
|
||||
body: JSON.stringify(ollamaRequestBody),
|
||||
});
|
||||
const ollamaResponse: OllamaResponse = await response.json();
|
||||
const ollamaResponse: OllamaChatResponse = await response.json();
|
||||
|
||||
// Check for refusal and retry up to 2 times
|
||||
if (isLLMRefusal(ollamaResponse.message.content) && retryAttempt < 2) {
|
||||
console.log(`LLM refused to answer (attempt ${retryAttempt + 1}), retrying with different seed...`);
|
||||
return generateOllamaRequest(notification, retryAttempt + 1);
|
||||
}
|
||||
|
||||
// Analyze interaction and update user memory (async, don't block response)
|
||||
analyzeAndUpdateMemory(userFqn, userMessage, ollamaResponse.message.content);
|
||||
|
||||
await storePromptData(notification, ollamaResponse);
|
||||
return ollamaResponse;
|
||||
}
|
||||
@ -149,15 +173,40 @@ const generateOllamaRequest = async (
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Analyze interaction and update user memory (runs asynchronously)
|
||||
*/
|
||||
const analyzeAndUpdateMemory = async (
|
||||
userFqn: string,
|
||||
userMessage: string,
|
||||
botResponse: string
|
||||
): Promise<void> => {
|
||||
try {
|
||||
// Run analysis in background - don't await to avoid blocking response
|
||||
const analysis = await analyzeInteraction(userMessage, botResponse, userFqn);
|
||||
|
||||
await updateUserMemory({
|
||||
userFqn,
|
||||
conversationContent: userMessage,
|
||||
botResponse,
|
||||
analysis,
|
||||
});
|
||||
} catch (error: any) {
|
||||
console.error(`Memory analysis failed for ${userFqn}: ${error.message}`);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
const postReplyToStatus = async (
|
||||
notification: Notification,
|
||||
ollamaResponseBody: OllamaResponse
|
||||
ollamaResponseBody: OllamaChatResponse
|
||||
) => {
|
||||
const { pleromaInstanceUrl, bearerToken } = envConfig;
|
||||
try {
|
||||
let mentions: string[];
|
||||
const statusBody: NewStatusBody = {
|
||||
content_type: "text/markdown",
|
||||
status: ollamaResponseBody.response,
|
||||
status: ollamaResponseBody.message.content,
|
||||
in_reply_to_id: notification.status.id,
|
||||
};
|
||||
if (
|
||||
@ -170,17 +219,14 @@ const postReplyToStatus = async (
|
||||
statusBody.to = mentions;
|
||||
}
|
||||
|
||||
const response = await fetch(
|
||||
`${process.env.PLEROMA_INSTANCE_URL}/api/v1/statuses`,
|
||||
{
|
||||
method: "POST",
|
||||
headers: {
|
||||
Authorization: `Bearer ${process.env.INSTANCE_BEARER_TOKEN}`,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
body: JSON.stringify(statusBody),
|
||||
}
|
||||
);
|
||||
const response = await fetch(`${pleromaInstanceUrl}/api/v1/statuses`, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
Authorization: `Bearer ${bearerToken}`,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
body: JSON.stringify(statusBody),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`New status request failed: ${response.statusText}`);
|
||||
@ -192,39 +238,59 @@ const postReplyToStatus = async (
|
||||
}
|
||||
};
|
||||
|
||||
const deleteNotification = async (notification: Notification) => {
|
||||
const createTimelinePost = async () => {
|
||||
const {
|
||||
bearerToken,
|
||||
ollamaModel,
|
||||
ollamaSystemPrompt,
|
||||
ollamaUrl,
|
||||
pleromaInstanceUrl,
|
||||
} = envConfig;
|
||||
const ollamaRequestBody: OllamaChatRequest = {
|
||||
model: ollamaModel,
|
||||
messages: [
|
||||
{ role: "system", content: ollamaSystemPrompt as string },
|
||||
{ role: "user", content: "Say something random." },
|
||||
],
|
||||
stream: false,
|
||||
options: ollamaConfig,
|
||||
};
|
||||
try {
|
||||
if (!notification.id) {
|
||||
return;
|
||||
}
|
||||
await prisma.response.updateMany({
|
||||
// this is probably not the best way to do this, but since we may have duplicate notifications, we have to update all of them - probably won't scale (lmao)
|
||||
where: { pleromaNotificationId: notification.id },
|
||||
data: { isProcessing: false },
|
||||
const response = await fetch(`${ollamaUrl}/api/chat`, {
|
||||
method: "POST",
|
||||
body: JSON.stringify(ollamaRequestBody),
|
||||
});
|
||||
const response = await fetch(
|
||||
`${process.env.PLEROMA_INSTANCE_URL}/api/v1/notifications/${notification.id}/dismiss`,
|
||||
if (!response.ok)
|
||||
throw new Error("Error generating ad-hoc Ollama response");
|
||||
|
||||
const ollamaResponse: OllamaChatResponse = await response.json();
|
||||
|
||||
const newStatusBody: NewStatusBody = {
|
||||
content_type: "text/markdown",
|
||||
status: ollamaResponse.message.content,
|
||||
};
|
||||
|
||||
const pleromaResponse = await fetch(
|
||||
`${pleromaInstanceUrl}/api/v1/statuses`,
|
||||
{
|
||||
method: "POST",
|
||||
headers: {
|
||||
Authorization: `Bearer ${process.env.INSTANCE_BEARER_TOKEN}`,
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${bearerToken}`,
|
||||
},
|
||||
body: JSON.stringify(newStatusBody),
|
||||
}
|
||||
);
|
||||
if (!response.ok) {
|
||||
console.error(
|
||||
`Could not delete notification ID: ${notification.id}\nReason: ${response.status} - ${response.statusText}`
|
||||
);
|
||||
|
||||
if (!pleromaResponse.ok)
|
||||
throw new Error("Error posting ad-hoc Ollama response to Pleroma");
|
||||
} catch (error: unknown) {
|
||||
if (error instanceof Error) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
const fetchInterval = process.env.FETCH_INTERVAL
|
||||
? parseInt(process.env.FETCH_INTERVAL)
|
||||
: 15000;
|
||||
|
||||
let notifications = [];
|
||||
const beginFetchCycle = async () => {
|
||||
setInterval(async () => {
|
||||
@ -233,22 +299,59 @@ const beginFetchCycle = async () => {
|
||||
await Promise.all(
|
||||
notifications.map(async (notification) => {
|
||||
try {
|
||||
// Handle reactions first (before generating response)
|
||||
// This way we can react even if response generation fails
|
||||
await handlePostReaction(notification);
|
||||
|
||||
// Then handle the response generation as before
|
||||
const ollamaResponse = await generateOllamaRequest(notification);
|
||||
if (ollamaResponse) {
|
||||
postReplyToStatus(notification, ollamaResponse);
|
||||
await postReplyToStatus(notification, ollamaResponse);
|
||||
}
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
console.error(`Error processing notification ${notification.id}: ${error.message}`);
|
||||
// Still try to delete the notification to avoid getting stuck
|
||||
try {
|
||||
await deleteNotification(notification);
|
||||
} catch (deleteError: any) {
|
||||
console.error(`Failed to delete notification: ${deleteError.message}`);
|
||||
}
|
||||
}
|
||||
})
|
||||
);
|
||||
}
|
||||
}, fetchInterval); // lower intervals may cause the bot to respond multiple times to the same message, but we try to mitigate this with the deleteNotification function
|
||||
}, envConfig.fetchInterval);
|
||||
};
|
||||
|
||||
const beginStatusPostInterval = async () => {
|
||||
setInterval(async () => {
|
||||
try {
|
||||
createTimelinePost();
|
||||
} catch (error: unknown) {
|
||||
if (error instanceof Error) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
}
|
||||
}, envConfig.adHocPostInterval);
|
||||
};
|
||||
|
||||
console.log(
|
||||
`Fetching notifications from ${process.env.PLEROMA_INSTANCE_DOMAIN}, every ${
|
||||
fetchInterval / 1000
|
||||
`Fetching notifications from ${envConfig.pleromaInstanceDomain}, every ${
|
||||
envConfig.fetchInterval / 1000
|
||||
} seconds.`
|
||||
);
|
||||
console.log(
|
||||
`Accepting prompts from: ${envConfig.whitelistedDomains.join(", ")}`
|
||||
);
|
||||
console.log(
|
||||
`Using model: ${envConfig.ollamaModel}\nConfig: ${JSON.stringify(
|
||||
ollamaConfig
|
||||
)}`
|
||||
);
|
||||
console.log(`System prompt: ${envConfig.ollamaSystemPrompt}`);
|
||||
|
||||
await beginFetchCycle();
|
||||
// setInterval(async () => {
|
||||
// createTimelinePost();
|
||||
// }, 10000);
|
||||
await beginStatusPostInterval();
|
||||
|
323
src/memory.ts
Normal file
323
src/memory.ts
Normal file
@ -0,0 +1,323 @@
|
||||
/**
|
||||
* ADAPTIVE MEMORY SYSTEM FOR FEDIVERSE CHATBOT
|
||||
*
|
||||
* This system maintains persistent, evolving user profiles to enable personalized
|
||||
* interactions across chat sessions. It uses LLM-based analysis to extract and
|
||||
* categorize user traits, then builds context for future conversations.
|
||||
*
|
||||
* ARCHITECTURE:
|
||||
* - UserMemory: Core profile (personality, gags, relationships, interests, backstory)
|
||||
* - InteractionLog: Historical conversation snapshots with sentiment analysis
|
||||
* - JSON string arrays in SQLite for flexible data storage
|
||||
*
|
||||
* WORKFLOW:
|
||||
* 1. Each user message + bot response gets analyzed by Ollama
|
||||
* 2. Extract personality traits, running gags, relationship dynamics, etc.
|
||||
* 3. Merge new insights with existing profile (deduplication)
|
||||
* 4. Generate memory context string for next conversation's system prompt
|
||||
* 5. Log interaction with sentiment and notable quotes
|
||||
*
|
||||
* MEMORY CATEGORIES:
|
||||
* - personalityTraits: User characteristics (sarcastic, protective, etc.)
|
||||
* - runningGags: Recurring jokes, memes, fake claims between user and bot
|
||||
* - relationships: How user treats bot (mean, protective, flirty)
|
||||
* - interests: Hobbies, topics user cares about
|
||||
* - backstory: Biographical info, "lore" (real or fabricated)
|
||||
*
|
||||
* CURRENT LIMITATIONS:
|
||||
* - No memory aging/decay - old info persists indefinitely
|
||||
* - Simple deduplication - similar but not identical entries accumulate
|
||||
* - No relevance scoring - stale assumptions carry same weight as recent ones
|
||||
* - Fixed array limits may truncate important long-term patterns
|
||||
*
|
||||
* RECOMMENDED IMPROVEMENTS:
|
||||
* - Add timestamp-based relevance weighting
|
||||
* - Implement semantic similarity checks for better deduplication
|
||||
* - Add contradiction detection to update outdated assumptions
|
||||
* - Consider LRU-style eviction instead of simple truncation
|
||||
*/
|
||||
|
||||
// Updated memory.ts with JSON string handling for SQLite
|
||||
import { prisma } from "./main.js";
|
||||
import { envConfig } from "./main.js";
|
||||
import { InteractionAnalysis, MemoryUpdateRequest, OllamaChatRequest, OllamaChatResponse } from "../types.js";
|
||||
|
||||
// Helper functions for JSON string array handling
|
||||
const parseJsonArray = (jsonString: string): string[] => {
|
||||
try {
|
||||
const parsed = JSON.parse(jsonString);
|
||||
return Array.isArray(parsed) ? parsed : [];
|
||||
} catch {
|
||||
return [];
|
||||
}
|
||||
};
|
||||
|
||||
const stringifyJsonArray = (array: string[]): string => {
|
||||
return JSON.stringify(array);
|
||||
};
|
||||
|
||||
/**
|
||||
* Analyze a conversation to extract user personality, gags, and relationship dynamics
|
||||
*/
|
||||
const analyzeInteraction = async (
|
||||
userMessage: string,
|
||||
botResponse: string,
|
||||
userFqn: string
|
||||
): Promise<InteractionAnalysis> => {
|
||||
const { ollamaUrl, ollamaModel } = envConfig;
|
||||
|
||||
const analysisPrompt = `Analyze this conversation between a user and a cute female AI chatbot named Lexi. Extract personality traits, running gags, relationship dynamics, and interesting facts.
|
||||
|
||||
User (${userFqn}): ${userMessage}
|
||||
Bot (Lexi): ${botResponse}
|
||||
|
||||
Please analyze and respond with a JSON object containing:
|
||||
{
|
||||
"sentiment": "positive|negative|neutral|teasing|flirty|aggressive",
|
||||
"topics": ["topic1", "topic2"],
|
||||
"personalityObservations": ["trait1", "trait2"],
|
||||
"runningGagUpdates": ["gag1", "gag2"],
|
||||
"relationshipUpdates": ["relationship_change1"],
|
||||
"interestMentions": ["interest1", "interest2"],
|
||||
"backstoryElements": ["fact1", "fact2"],
|
||||
"memorableQuotes": ["quote1", "quote2"]
|
||||
}
|
||||
|
||||
Focus on:
|
||||
- Personality traits (sarcastic, teasing, protective, joker, etc.)
|
||||
- Running gags and memes (fake claims, recurring jokes, etc.)
|
||||
- How they treat the bot (mean, nice, flirty, protective)
|
||||
- Interests and hobbies mentioned
|
||||
- Any biographical info (real or fake "lore")
|
||||
- Memorable or funny quotes
|
||||
|
||||
Keep entries brief and specific. Empty arrays are fine if nothing notable.`;
|
||||
|
||||
try {
|
||||
const analysisRequest: OllamaChatRequest = {
|
||||
model: ollamaModel,
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: "You are an expert at analyzing social interactions and extracting personality insights. Always respond with valid JSON only."
|
||||
},
|
||||
{ role: "user", content: analysisPrompt }
|
||||
],
|
||||
stream: false,
|
||||
options: {
|
||||
temperature: 0.3, // Lower temperature for more consistent analysis
|
||||
num_predict: 800,
|
||||
}
|
||||
};
|
||||
|
||||
const response = await fetch(`${ollamaUrl}/api/chat`, {
|
||||
method: "POST",
|
||||
body: JSON.stringify(analysisRequest),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
throw new Error(`Analysis request failed: ${response.statusText}`);
|
||||
}
|
||||
|
||||
const analysisResponse: OllamaChatResponse = await response.json();
|
||||
|
||||
try {
|
||||
// Parse the JSON response
|
||||
const analysis: InteractionAnalysis = JSON.parse(analysisResponse.message.content.trim());
|
||||
return analysis;
|
||||
} catch (parseError) {
|
||||
console.error("Failed to parse analysis JSON:", analysisResponse.message.content);
|
||||
// Return default analysis if parsing fails
|
||||
return {
|
||||
sentiment: 'neutral',
|
||||
topics: [],
|
||||
personalityObservations: [],
|
||||
runningGagUpdates: [],
|
||||
relationshipUpdates: [],
|
||||
interestMentions: [],
|
||||
backstoryElements: [],
|
||||
memorableQuotes: []
|
||||
};
|
||||
}
|
||||
} catch (error: any) {
|
||||
console.error(`Error analyzing interaction: ${error.message}`);
|
||||
return {
|
||||
sentiment: 'neutral',
|
||||
topics: [],
|
||||
personalityObservations: [],
|
||||
runningGagUpdates: [],
|
||||
relationshipUpdates: [],
|
||||
interestMentions: [],
|
||||
backstoryElements: [],
|
||||
memorableQuotes: []
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Get or create user memory profile
|
||||
*/
|
||||
const getUserMemory = async (userFqn: string) => {
|
||||
try {
|
||||
let memory = await prisma.userMemory.findUnique({
|
||||
where: { userFqn: userFqn }
|
||||
});
|
||||
|
||||
if (!memory) {
|
||||
memory = await prisma.userMemory.create({
|
||||
data: {
|
||||
userFqn: userFqn,
|
||||
personalityTraits: stringifyJsonArray([]),
|
||||
runningGags: stringifyJsonArray([]),
|
||||
relationships: stringifyJsonArray([]),
|
||||
interests: stringifyJsonArray([]),
|
||||
backstory: stringifyJsonArray([]),
|
||||
lastInteractionSummary: null,
|
||||
interactionCount: 0,
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
return memory;
|
||||
} catch (error: any) {
|
||||
console.error(`Error getting user memory: ${error.message}`);
|
||||
return null;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Update user memory with new interaction insights
|
||||
*/
|
||||
const updateUserMemory = async (request: MemoryUpdateRequest): Promise<void> => {
|
||||
try {
|
||||
const { userFqn, conversationContent, botResponse, analysis } = request;
|
||||
|
||||
// Get existing memory
|
||||
const existingMemory = await getUserMemory(userFqn);
|
||||
if (!existingMemory) return;
|
||||
|
||||
// Parse existing JSON arrays
|
||||
const existingPersonality = parseJsonArray(existingMemory.personalityTraits);
|
||||
const existingGags = parseJsonArray(existingMemory.runningGags);
|
||||
const existingRelationships = parseJsonArray(existingMemory.relationships);
|
||||
const existingInterests = parseJsonArray(existingMemory.interests);
|
||||
const existingBackstory = parseJsonArray(existingMemory.backstory);
|
||||
|
||||
// Merge new observations with existing ones (avoiding duplicates)
|
||||
const mergeArrays = (existing: string[], newItems: string[]): string[] => {
|
||||
const combined = [...existing, ...newItems];
|
||||
return [...new Set(combined)]; // Remove duplicates
|
||||
};
|
||||
|
||||
// Limit array sizes to prevent memory bloat
|
||||
const limitArray = (arr: string[], maxSize: number = 20): string[] => {
|
||||
return arr.slice(-maxSize); // Keep most recent items
|
||||
};
|
||||
|
||||
const updatedMemory = {
|
||||
personalityTraits: stringifyJsonArray(limitArray(mergeArrays(existingPersonality, analysis.personalityObservations))),
|
||||
runningGags: stringifyJsonArray(limitArray(mergeArrays(existingGags, analysis.runningGagUpdates))),
|
||||
relationships: stringifyJsonArray(limitArray(mergeArrays(existingRelationships, analysis.relationshipUpdates))),
|
||||
interests: stringifyJsonArray(limitArray(mergeArrays(existingInterests, analysis.interestMentions))),
|
||||
backstory: stringifyJsonArray(limitArray(mergeArrays(existingBackstory, analysis.backstoryElements))),
|
||||
lastInteractionSummary: `${analysis.sentiment} conversation about ${analysis.topics.join(', ') || 'general chat'}`,
|
||||
interactionCount: existingMemory.interactionCount + 1,
|
||||
};
|
||||
|
||||
// Update database
|
||||
await prisma.userMemory.update({
|
||||
where: { userFqn: userFqn },
|
||||
data: updatedMemory
|
||||
});
|
||||
|
||||
// Log the interaction for historical reference
|
||||
await prisma.interactionLog.create({
|
||||
data: {
|
||||
userFqn: userFqn,
|
||||
conversationSnapshot: `${userFqn}: ${conversationContent.slice(0, 200)}... | Lexi: ${botResponse.slice(0, 200)}...`,
|
||||
sentiment: analysis.sentiment,
|
||||
extractedTopics: stringifyJsonArray(analysis.topics),
|
||||
memorableQuotes: stringifyJsonArray(analysis.memorableQuotes),
|
||||
botEmotionalState: generateEmotionalState(analysis),
|
||||
}
|
||||
});
|
||||
|
||||
console.log(`Updated memory for ${userFqn}: ${analysis.personalityObservations.join(', ')}`);
|
||||
} catch (error: any) {
|
||||
console.error(`Error updating user memory: ${error.message}`);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Generate how the bot should "feel" about this interaction
|
||||
*/
|
||||
const generateEmotionalState = (analysis: InteractionAnalysis): string => {
|
||||
const { sentiment, relationshipUpdates } = analysis;
|
||||
|
||||
if (sentiment === 'teasing') return 'playfully_hurt';
|
||||
if (sentiment === 'flirty') return 'flustered';
|
||||
if (sentiment === 'aggressive') return 'sad';
|
||||
if (relationshipUpdates.some(rel => rel.includes('hurt') || rel.includes('mean'))) return 'hurt_feelings';
|
||||
if (relationshipUpdates.some(rel => rel.includes('cute') || rel.includes('sweet'))) return 'happy';
|
||||
return 'neutral';
|
||||
};
|
||||
|
||||
/**
|
||||
* Generate memory context for system prompt
|
||||
*/
|
||||
const generateMemoryContext = async (userFqn: string): Promise<string> => {
|
||||
try {
|
||||
const memory = await getUserMemory(userFqn);
|
||||
if (!memory || memory.interactionCount === 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
let context = `\n\n--- User Memory for ${userFqn} ---\n`;
|
||||
|
||||
const personalityTraits = parseJsonArray(memory.personalityTraits);
|
||||
const runningGags = parseJsonArray(memory.runningGags);
|
||||
const relationships = parseJsonArray(memory.relationships);
|
||||
const interests = parseJsonArray(memory.interests);
|
||||
const backstory = parseJsonArray(memory.backstory);
|
||||
|
||||
if (personalityTraits.length > 0) {
|
||||
context += `Personality: ${personalityTraits.join(', ')}\n`;
|
||||
}
|
||||
|
||||
if (runningGags.length > 0) {
|
||||
context += `Running gags: ${runningGags.join(', ')}\n`;
|
||||
}
|
||||
|
||||
if (relationships.length > 0) {
|
||||
context += `Our relationship: ${relationships.join(', ')}\n`;
|
||||
}
|
||||
|
||||
if (interests.length > 0) {
|
||||
context += `Interests: ${interests.join(', ')}\n`;
|
||||
}
|
||||
|
||||
if (backstory.length > 0) {
|
||||
context += `Background: ${backstory.join(', ')}\n`;
|
||||
}
|
||||
|
||||
if (memory.lastInteractionSummary) {
|
||||
context += `Last time we talked: ${memory.lastInteractionSummary}\n`;
|
||||
}
|
||||
|
||||
context += `Total conversations: ${memory.interactionCount}`;
|
||||
|
||||
return context;
|
||||
} catch (error: any) {
|
||||
console.error(`Error generating memory context: ${error.message}`);
|
||||
return "";
|
||||
}
|
||||
};
|
||||
|
||||
export {
|
||||
analyzeInteraction,
|
||||
updateUserMemory,
|
||||
getUserMemory,
|
||||
generateMemoryContext,
|
||||
parseJsonArray,
|
||||
stringifyJsonArray,
|
||||
};
|
42
src/prisma.ts
Normal file
42
src/prisma.ts
Normal file
@ -0,0 +1,42 @@
|
||||
import { Notification, OllamaChatResponse } from "../types.js";
|
||||
import { trimInputData } from "./util.js";
|
||||
import { prisma } from "./main.js";
|
||||
|
||||
const storePromptData = async (
|
||||
notification: Notification,
|
||||
ollamaResponseBody: OllamaChatResponse
|
||||
) => {
|
||||
try {
|
||||
await prisma.response.updateMany({
|
||||
where: { pleromaNotificationId: notification.id },
|
||||
data: {
|
||||
response: ollamaResponseBody.message.content,
|
||||
request: trimInputData(notification.status.content),
|
||||
to: notification.account.fqn,
|
||||
isProcessing: false,
|
||||
isComplete: true,
|
||||
},
|
||||
});
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
const storeUserData = async (notification: Notification): Promise<void> => {
|
||||
try {
|
||||
await prisma.user.upsert({
|
||||
where: { userFqn: notification.status.account.fqn },
|
||||
update: {
|
||||
lastRespondedTo: new Date(Date.now()),
|
||||
},
|
||||
create: {
|
||||
userFqn: notification.status.account.fqn,
|
||||
lastRespondedTo: new Date(Date.now()),
|
||||
},
|
||||
});
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
export { storeUserData, storePromptData };
|
267
src/util.ts
Normal file
267
src/util.ts
Normal file
@ -0,0 +1,267 @@
|
||||
import striptags from "striptags";
|
||||
import { prisma } from "./main.js";
|
||||
import { envConfig } from "./main.js";
|
||||
import { Notification } from "../types.js";
|
||||
import { OllamaChatRequest, OllamaChatResponse, PostAncestorsForModel } from "../types.js";
|
||||
|
||||
|
||||
const trimInputData = (input: string): string => {
|
||||
const strippedInput = striptags(input);
|
||||
|
||||
const split = strippedInput.split(" ");
|
||||
// const promptStringIndex = split.indexOf("!prompt");
|
||||
const botFqnIndex = split.indexOf("@nice-ai");
|
||||
const botFqnIndexFull = split.indexOf("@nice-ai@nicecrew.digital");
|
||||
if (botFqnIndex !== -1) {
|
||||
split[botFqnIndex] = "Lexi";
|
||||
}
|
||||
if (botFqnIndexFull !== -1) {
|
||||
split[botFqnIndexFull] = "Lexi";
|
||||
}
|
||||
// split.splice(promptStringIndex, 1);
|
||||
return split.join(" "); // returns everything after the !prompt
|
||||
};
|
||||
|
||||
const recordPendingResponse = async (notification: Notification) => {
|
||||
try {
|
||||
await prisma.response.create({
|
||||
data: {
|
||||
pleromaNotificationId: notification.id,
|
||||
isProcessing: true,
|
||||
isComplete: false,
|
||||
},
|
||||
});
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
const shouldContinue = (notification: Notification) => {
|
||||
// wow this is bad
|
||||
try {
|
||||
const { botAccountId } = envConfig;
|
||||
const statusContent = trimInputData(notification.status.content);
|
||||
if (
|
||||
// notification.status.visibility !== "private" &&
|
||||
!notification.account.bot &&
|
||||
notification.type === "mention"
|
||||
) {
|
||||
if (notification.status.in_reply_to_account_id === botAccountId) {
|
||||
return true;
|
||||
} else if (
|
||||
notification.status.in_reply_to_account_id !== botAccountId &&
|
||||
statusContent.includes("Lexi")
|
||||
) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} catch (error: unknown) {
|
||||
if (error instanceof Error) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const isFromWhitelistedDomain = (notification: Notification): boolean => {
|
||||
try {
|
||||
const domain = notification.status.account.fqn.split("@")[1];
|
||||
if (envConfig.whitelistedDomains.includes(domain)) {
|
||||
return true;
|
||||
}
|
||||
console.log(
|
||||
`Rejecting prompt request from non-whitelisted domain: ${domain}`
|
||||
);
|
||||
return false;
|
||||
} catch (error: any) {
|
||||
console.error(`Error with domain check: ${error.message}`);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
const alreadyRespondedTo = async (
|
||||
notification: Notification
|
||||
): Promise<boolean> => {
|
||||
try {
|
||||
const duplicate = await prisma.response.findFirst({
|
||||
where: { pleromaNotificationId: notification.id },
|
||||
});
|
||||
if (duplicate?.isProcessing || duplicate?.isComplete) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
} catch (error: any) {
|
||||
throw new Error(error.message);
|
||||
}
|
||||
};
|
||||
|
||||
const selectRandomEmoji = (emojiList: string[]) => {
|
||||
return emojiList[Math.floor(Math.random() * emojiList.length)];
|
||||
};
|
||||
|
||||
const selectRandomEmojis = (emojiList: string[], count: number = 20): string[] => {
|
||||
if (emojiList.length <= count) return emojiList;
|
||||
|
||||
const shuffled = [...emojiList].sort(() => 0.5 - Math.random());
|
||||
return shuffled.slice(0, count);
|
||||
};
|
||||
|
||||
const isLLMRefusal = (response: string): boolean => {
|
||||
const refusalPatterns = [
|
||||
/i can't|i cannot|unable to|i'm not able to/i,
|
||||
/i don't feel comfortable/i,
|
||||
/i'm not comfortable/i,
|
||||
/i shouldn't|i won't/i,
|
||||
/that's not something i can/i,
|
||||
/i'm not programmed to/i,
|
||||
/i'm an ai (assistant|language model)/i,
|
||||
/as an ai/i,
|
||||
/i apologize, but/i,
|
||||
/i must decline/i,
|
||||
/that would be inappropriate/i,
|
||||
/i'm not supposed to/i,
|
||||
/i'd rather not/i,
|
||||
/i prefer not to/i,
|
||||
/against my guidelines/i,
|
||||
/violates my programming/i,
|
||||
];
|
||||
|
||||
const normalizedResponse = response.toLowerCase().trim();
|
||||
|
||||
// Check if response is too short (likely a refusal)
|
||||
if (normalizedResponse.length < 20) return true;
|
||||
|
||||
// Check for refusal patterns
|
||||
return refusalPatterns.some(pattern => pattern.test(normalizedResponse));
|
||||
};
|
||||
|
||||
/**
|
||||
* Summarize a long conversation thread to reduce context length
|
||||
*/
|
||||
const summarizeConversationHistory = async (
|
||||
conversationHistory: PostAncestorsForModel[]
|
||||
): Promise<string> => {
|
||||
const { ollamaUrl, ollamaModel } = envConfig;
|
||||
|
||||
if (conversationHistory.length === 0) return "";
|
||||
|
||||
// Create a concise thread representation
|
||||
const threadText = conversationHistory
|
||||
.map(post => `${post.account_fqn}: ${post.plaintext_content}`)
|
||||
.join('\n');
|
||||
|
||||
const summarizePrompt = `Summarize this conversation thread in 2-3 sentences, focusing on the main topics discussed and the overall tone/mood. Keep it brief but capture the essential context:
|
||||
|
||||
${threadText}
|
||||
|
||||
Summary:`;
|
||||
|
||||
try {
|
||||
const summarizeRequest: OllamaChatRequest = {
|
||||
model: ollamaModel,
|
||||
messages: [
|
||||
{
|
||||
role: "system",
|
||||
content: "You are excellent at creating concise, informative summaries. Keep summaries under 150 words and focus on key topics and relationships between participants."
|
||||
},
|
||||
{ role: "user", content: summarizePrompt }
|
||||
],
|
||||
stream: false,
|
||||
options: {
|
||||
temperature: 0.2, // Low temperature for consistent summaries
|
||||
num_predict: 200,
|
||||
num_ctx: 4096, // Smaller context for summarization
|
||||
}
|
||||
};
|
||||
|
||||
const response = await fetch(`${ollamaUrl}/api/chat`, {
|
||||
method: "POST",
|
||||
body: JSON.stringify(summarizeRequest),
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
console.error(`Summary request failed: ${response.statusText}`);
|
||||
return `Previous conversation with ${conversationHistory.length} messages about various topics.`;
|
||||
}
|
||||
|
||||
const summaryResponse: OllamaChatResponse = await response.json();
|
||||
return summaryResponse.message.content.trim();
|
||||
|
||||
} catch (error: any) {
|
||||
console.error(`Error summarizing conversation: ${error.message}`);
|
||||
return `Previous conversation with ${conversationHistory.length} messages.`;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Decide whether to summarize based on thread length and complexity
|
||||
*/
|
||||
const shouldSummarizeThread = (conversationHistory: PostAncestorsForModel[]): boolean => {
|
||||
const SUMMARY_THRESHOLD = 15;
|
||||
|
||||
if (conversationHistory.length < SUMMARY_THRESHOLD) return false;
|
||||
|
||||
// Additional heuristics could be added here:
|
||||
// - Total character count
|
||||
// - Average message length
|
||||
// - Time span of conversation
|
||||
|
||||
return true;
|
||||
};
|
||||
|
||||
/**
|
||||
* Process conversation history - either use full context or summarized version
|
||||
*/
|
||||
const processConversationHistory = async (
|
||||
conversationHistory: PostAncestorsForModel[]
|
||||
): Promise<string> => {
|
||||
if (!shouldSummarizeThread(conversationHistory)) {
|
||||
// Use full context for short threads
|
||||
return conversationHistory
|
||||
.map(post =>
|
||||
`${post.account_fqn} (to ${post.mentions.join(", ")}): ${post.plaintext_content}`
|
||||
)
|
||||
.join('\n');
|
||||
}
|
||||
|
||||
// Keep the last few messages in full detail + summary of earlier messages
|
||||
const KEEP_RECENT_COUNT = 5;
|
||||
const recentMessages = conversationHistory.slice(-KEEP_RECENT_COUNT);
|
||||
const olderMessages = conversationHistory.slice(0, -KEEP_RECENT_COUNT);
|
||||
|
||||
let contextString = "";
|
||||
|
||||
if (olderMessages.length > 0) {
|
||||
const summary = await summarizeConversationHistory(olderMessages);
|
||||
contextString += `Earlier conversation summary: ${summary}\n\n`;
|
||||
}
|
||||
|
||||
if (recentMessages.length > 0) {
|
||||
contextString += "Recent messages:\n";
|
||||
contextString += recentMessages
|
||||
.map(post =>
|
||||
`${post.account_fqn} (to ${post.mentions.join(", ")}): ${post.plaintext_content}`
|
||||
)
|
||||
.join('\n');
|
||||
}
|
||||
|
||||
return contextString;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
export {
|
||||
alreadyRespondedTo,
|
||||
selectRandomEmoji,
|
||||
selectRandomEmojis,
|
||||
isLLMRefusal,
|
||||
trimInputData,
|
||||
recordPendingResponse,
|
||||
isFromWhitelistedDomain,
|
||||
shouldContinue,
|
||||
summarizeConversationHistory,
|
||||
shouldSummarizeThread,
|
||||
processConversationHistory,
|
||||
};
|
14
systemd.service
Normal file
14
systemd.service
Normal file
@ -0,0 +1,14 @@
|
||||
[Unit]
|
||||
Description=Pleroma Ollama Bot
|
||||
Wants=network-online.target
|
||||
After=network-online.target
|
||||
|
||||
[Service]
|
||||
Type=simple
|
||||
User=bot
|
||||
Restart=always
|
||||
RestartSec=3
|
||||
ExecStart=/usr/bin/screen -L -DmS pleroma-ollama-bot /home/bot/.nvm/versions/node/v22.11.0/bin/npm run start
|
||||
WorkingDirectory=/path/to/directory
|
||||
[Install]
|
||||
WantedBy=multi-user.target
|
304
types.d.ts
vendored
304
types.d.ts
vendored
@ -6,6 +6,41 @@ export interface Notification {
|
||||
created_at: string;
|
||||
}
|
||||
|
||||
export interface ContextResponse {
|
||||
ancestors: ContextObject[];
|
||||
descendents: ContextObject[];
|
||||
}
|
||||
|
||||
export interface PostAncestorsForModel {
|
||||
account_fqn: string;
|
||||
mentions: string[];
|
||||
plaintext_content: string;
|
||||
}
|
||||
|
||||
interface ContextAccountObject {
|
||||
acct: string;
|
||||
avatar: string;
|
||||
bot: boolean;
|
||||
display_name: string;
|
||||
followers_count: number;
|
||||
following_count: number;
|
||||
fqn: string;
|
||||
id: string;
|
||||
}
|
||||
|
||||
export interface ContextObject {
|
||||
content: string;
|
||||
id: string;
|
||||
in_reply_to_account_id: string | null;
|
||||
in_reply_to_id: string | null;
|
||||
media_attachments: string[];
|
||||
mentions: Mention[];
|
||||
pleroma: PleromaObjectInResponse;
|
||||
visibility: "public" | "private" | "unlisted";
|
||||
uri: string;
|
||||
account: ContextAccountObject;
|
||||
}
|
||||
|
||||
export interface NewStatusBody {
|
||||
content_type: "application/json" | "text/markdown";
|
||||
in_reply_to_id?: string;
|
||||
@ -36,14 +71,48 @@ export interface OllamaRequest {
|
||||
/**
|
||||
* Whatever system prompt you'd like to add to the model to make it more unique, or force it to respond a certain way.
|
||||
*/
|
||||
system: string;
|
||||
system?: string;
|
||||
/**
|
||||
* Whether to stream responses from the API, or have it sent all as one payload.
|
||||
*/
|
||||
stream?: boolean = false; // stream response vs get response in one full message
|
||||
stream?: boolean = false;
|
||||
/**
|
||||
* Ollama configuration options
|
||||
*/
|
||||
options?: OllamaConfigOptions;
|
||||
}
|
||||
|
||||
export interface OllamaChatRequest {
|
||||
model: string;
|
||||
messages: OllamaMessages[];
|
||||
stream?: boolean = false;
|
||||
options?: OllamaConfigOptions;
|
||||
}
|
||||
|
||||
export interface OllamaChatResponse {
|
||||
model: string;
|
||||
created_at: string;
|
||||
message: OllamaChatResponseMessage;
|
||||
done_reason: "string";
|
||||
done: boolean;
|
||||
total_duration: number;
|
||||
load_duration: number;
|
||||
prompt_eval_count: number;
|
||||
prompt_eval_duration: number;
|
||||
eval_count: number;
|
||||
eval_duration: number;
|
||||
}
|
||||
|
||||
interface OllamaChatResponseMessage {
|
||||
role: "assistant";
|
||||
content: string;
|
||||
}
|
||||
|
||||
interface OllamaMessages {
|
||||
role: "system" | "user";
|
||||
content: string;
|
||||
}
|
||||
|
||||
export interface OllamaResponse {
|
||||
model: string;
|
||||
created_at: Date | string;
|
||||
@ -58,8 +127,19 @@ export interface Status {
|
||||
created_at: string | Date; // when the post was created
|
||||
id: string; // ID of the reply itself
|
||||
in_reply_to_account_id: string; // account ID of the reply
|
||||
in_reply_to_id?: string; // status that the user has replied to
|
||||
mentions?: Mention[]; // array of mentions
|
||||
in_reply_to_id: string; // status that the user has replied to
|
||||
mentions: Mention[]; // array of mentions
|
||||
pleroma: PleromaObjectInResponse;
|
||||
visibility: "private" | "public" | "unlisted";
|
||||
}
|
||||
|
||||
interface PleromaObjectInResponse {
|
||||
content: { "text/plain": string };
|
||||
context: string;
|
||||
conversation_id: number;
|
||||
direct_conversation_id: number | null;
|
||||
local: boolean;
|
||||
in_reply_to_account_acct: string;
|
||||
}
|
||||
|
||||
export interface Mention {
|
||||
@ -69,48 +149,224 @@ export interface Mention {
|
||||
username: string;
|
||||
}
|
||||
|
||||
export interface PleromaEmoji {
|
||||
[emojiName: string]: PleromaEmojiMetadata;
|
||||
}
|
||||
|
||||
interface PleromaEmojiMetadata {
|
||||
image_url: string;
|
||||
tags: string[];
|
||||
}
|
||||
|
||||
interface ReactionRequest {
|
||||
name: string; // emoji name without colons
|
||||
}
|
||||
|
||||
interface ReactionResponse {
|
||||
name: string;
|
||||
count: number;
|
||||
me: boolean;
|
||||
url?: string;
|
||||
static_url?: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Experimental settings, I wouldn't recommend messing with these if you don't know how they work (I don't either)
|
||||
*/
|
||||
export interface OllamaConfigOptions {
|
||||
/**
|
||||
* Number of tokens guaranteed to be kept in memory during response generation. Higher values leave less
|
||||
* possible room for num_ctx
|
||||
* Number of tokens guaranteed to be kept in memory during response generation.
|
||||
* Higher values leave less room for num_ctx. Used to preserve important context.
|
||||
* Default: 0, Range: 0-512
|
||||
*/
|
||||
num_keep?: number;
|
||||
seed?: number;
|
||||
|
||||
/**
|
||||
* Sets maximum of tokens in the response
|
||||
* Random seed for reproducible outputs. Same seed + same inputs = same output.
|
||||
* Default: -1 (random), Range: any integer
|
||||
*/
|
||||
seed?: number;
|
||||
|
||||
/**
|
||||
* Maximum number of tokens to generate in the response. Controls response length.
|
||||
* Default: 128, Range: 1-4096+ (model dependent)
|
||||
*/
|
||||
num_predict?: number;
|
||||
top_k?: number;
|
||||
top_p?: number;
|
||||
min_p?: number;
|
||||
typical_p?: number;
|
||||
repeat_last_n?: number;
|
||||
|
||||
/**
|
||||
* How close of a response should the response be to the original prompt - lower = more focused response
|
||||
* Limits token selection to top K most probable tokens. Reduces randomness.
|
||||
* Default: 40, Range: 1-100 (higher = more diverse)
|
||||
*/
|
||||
top_k?: number;
|
||||
|
||||
/**
|
||||
* Nucleus sampling - cumulative probability cutoff for token selection.
|
||||
* Default: 0.9, Range: 0.0-1.0 (lower = more focused)
|
||||
*/
|
||||
top_p?: number;
|
||||
|
||||
/**
|
||||
* Alternative to top_p - minimum probability threshold for tokens.
|
||||
* Default: 0.0, Range: 0.0-1.0 (higher = more selective)
|
||||
*/
|
||||
min_p?: number;
|
||||
|
||||
/**
|
||||
* Typical sampling - targets tokens with "typical" probability mass.
|
||||
* Default: 1.0 (disabled), Range: 0.0-1.0 (lower = less random)
|
||||
*/
|
||||
typical_p?: number;
|
||||
|
||||
/**
|
||||
* Number of previous tokens to consider for repetition penalty.
|
||||
* Default: 64, Range: 0-512
|
||||
*/
|
||||
repeat_last_n?: number;
|
||||
|
||||
/**
|
||||
* Randomness/creativity control. Lower = more deterministic, higher = more creative.
|
||||
* Default: 0.8, Range: 0.0-2.0 (sweet spot: 0.1-1.2)
|
||||
*/
|
||||
temperature?: number;
|
||||
repeat_penalty?: number;
|
||||
presence_penalty?: number;
|
||||
frequency_penalty?: number;
|
||||
mirostat?: number;
|
||||
mirostat_tau?: number;
|
||||
mirostat_eta?: number;
|
||||
penalize_newline?: boolean;
|
||||
stop?: string[];
|
||||
numa?: boolean;
|
||||
|
||||
/**
|
||||
* Number of tokens for the prompt to keep in memory for the response, minus the value of num_keep
|
||||
* Penalty for repeating tokens. Higher values reduce repetition.
|
||||
* Default: 1.1, Range: 0.0-2.0 (1.0 = no penalty)
|
||||
*/
|
||||
repeat_penalty?: number;
|
||||
|
||||
/**
|
||||
* Penalty for using tokens that have already appeared (OpenAI-style).
|
||||
* Default: 0.0, Range: -2.0 to 2.0
|
||||
*/
|
||||
presence_penalty?: number;
|
||||
|
||||
/**
|
||||
* Penalty proportional to token frequency in text (OpenAI-style).
|
||||
* Default: 0.0, Range: -2.0 to 2.0
|
||||
*/
|
||||
frequency_penalty?: number;
|
||||
|
||||
/**
|
||||
* Enables Mirostat sampling algorithm (0=disabled, 1=v1, 2=v2).
|
||||
* Default: 0, Range: 0, 1, or 2
|
||||
*/
|
||||
mirostat?: number;
|
||||
|
||||
/**
|
||||
* Target entropy for Mirostat. Controls coherence vs creativity balance.
|
||||
* Default: 5.0, Range: 0.0-10.0
|
||||
*/
|
||||
mirostat_tau?: number;
|
||||
|
||||
/**
|
||||
* Learning rate for Mirostat. How quickly it adapts.
|
||||
* Default: 0.1, Range: 0.001-1.0
|
||||
*/
|
||||
mirostat_eta?: number;
|
||||
|
||||
/**
|
||||
* Apply penalty to newline tokens to control formatting.
|
||||
* Default: true
|
||||
*/
|
||||
penalize_newline?: boolean;
|
||||
|
||||
/**
|
||||
* Array of strings that will stop generation when encountered.
|
||||
* Default: [], Example: ["\n", "User:", "###"]
|
||||
*/
|
||||
stop?: string[];
|
||||
|
||||
/**
|
||||
* Enable NUMA (Non-Uniform Memory Access) optimization.
|
||||
* Default: false (Linux systems may benefit from true)
|
||||
*/
|
||||
numa?: boolean;
|
||||
|
||||
/**
|
||||
* Context window size - total tokens for prompt + response.
|
||||
* Default: 2048, Range: 512-32768+ (model dependent, affects memory usage)
|
||||
*/
|
||||
num_ctx?: number;
|
||||
|
||||
/**
|
||||
* Batch size for prompt processing. Higher = faster but more memory.
|
||||
* Default: 512, Range: 1-2048
|
||||
*/
|
||||
num_batch?: number;
|
||||
|
||||
/**
|
||||
* Number of GPU layers to offload. -1 = auto, 0 = CPU only.
|
||||
* Default: -1, Range: -1 to model layer count
|
||||
*/
|
||||
num_gpu?: number;
|
||||
|
||||
/**
|
||||
* Primary GPU device ID for multi-GPU setups.
|
||||
* Default: 0, Range: 0 to (GPU count - 1)
|
||||
*/
|
||||
main_gpu?: number;
|
||||
|
||||
/**
|
||||
* Optimize for low VRAM usage at cost of speed.
|
||||
* Default: false
|
||||
*/
|
||||
low_vram?: boolean;
|
||||
|
||||
/**
|
||||
* Only load vocabulary, skip weights. For tokenization only.
|
||||
* Default: false
|
||||
*/
|
||||
vocab_only?: boolean;
|
||||
|
||||
/**
|
||||
* Use memory mapping for model files (faster loading).
|
||||
* Default: true
|
||||
*/
|
||||
use_mmap?: boolean;
|
||||
|
||||
/**
|
||||
* Lock model in memory to prevent swapping.
|
||||
* Default: false (enable for consistent performance)
|
||||
*/
|
||||
use_mlock?: boolean;
|
||||
|
||||
/**
|
||||
* Number of CPU threads for inference.
|
||||
* Default: auto-detected, Range: 1 to CPU core count
|
||||
*/
|
||||
num_thread?: number;
|
||||
}
|
||||
|
||||
|
||||
export interface UserMemory {
|
||||
id: number;
|
||||
userFqn: string;
|
||||
personalityTraits: string[]; // ["teases_bot", "sarcastic", "friendly", "joker"]
|
||||
runningGags: string[]; // ["claims_to_shit_pants", "pretends_to_be_cat", "always_hungry"]
|
||||
relationships: string[]; // ["hurt_my_feelings_once", "called_me_cute", "protective_of_me"]
|
||||
interests: string[]; // ["programming", "anime", "cooking"]
|
||||
backstory: string[]; // ["works_at_tech_company", "has_three_cats", "lives_in_california"]
|
||||
lastInteractionSummary: string; // Brief summary of last conversation
|
||||
interactionCount: number;
|
||||
lastUpdated: DateTime;
|
||||
createdAt: DateTime;
|
||||
}
|
||||
|
||||
export interface InteractionAnalysis {
|
||||
sentiment: 'positive' | 'negative' | 'neutral' | 'teasing' | 'flirty' | 'aggressive';
|
||||
topics: string[]; // Extracted topics from conversation
|
||||
personalityObservations: string[]; // New traits observed
|
||||
runningGagUpdates: string[]; // New or updated running gags
|
||||
relationshipUpdates: string[]; // How relationship with bot changed
|
||||
interestMentions: string[]; // Interests/hobbies mentioned
|
||||
backstoryElements: string[]; // New biographical info (real or fake)
|
||||
memorableQuotes: string[]; // Funny or notable things they said
|
||||
}
|
||||
|
||||
export interface MemoryUpdateRequest {
|
||||
userFqn: string;
|
||||
conversationContent: string;
|
||||
botResponse: string;
|
||||
analysis: InteractionAnalysis;
|
||||
}
|
Reference in New Issue
Block a user