added emote reaction support, better emote support in reactions, implemented llm refusal and retry logic, improved some inline documentation

This commit is contained in:
2025-08-03 22:19:24 -07:00
parent 733a41a35c
commit 834e415f11
5 changed files with 426 additions and 39 deletions

View File

@ -28,3 +28,14 @@ model User {
userFqn String @unique
lastRespondedTo DateTime?
}
model Reaction {
id Int @id @default(autoincrement())
statusId String // The Pleroma status ID we reacted to
emojiName String // The emoji we used to react
reactedAt DateTime @default(now())
createdAt DateTime @default(now())
@@unique([statusId]) // Prevent multiple reactions to same status
@@map("reactions")
}

View File

@ -1,5 +1,7 @@
import { envConfig, prisma } from "./main.js";
import { PleromaEmoji, Notification, ContextResponse } from "../types.js";
import { selectRandomEmojis } from "./util.js";
const getNotifications = async () => {
const { bearerToken, pleromaInstanceUrl } = envConfig;
@ -98,9 +100,184 @@ const deleteNotification = async (notification: Notification) => {
}
};
/**
* React to a status with a random emoji
*/
const reactToStatus = async (statusId: string, emojiName: string): Promise<boolean> => {
const { bearerToken, pleromaInstanceUrl } = envConfig;
try {
const response = await fetch(
`${pleromaInstanceUrl}/api/v1/statuses/${statusId}/react/${emojiName}`,
{
method: "PUT",
headers: {
Authorization: `Bearer ${bearerToken}`,
"Content-Type": "application/json",
},
}
);
if (!response.ok) {
console.error(`Failed to react to status ${statusId}: ${response.status} - ${response.statusText}`);
return false;
}
return true;
} catch (error: any) {
console.error(`Error reacting to status ${statusId}: ${error.message}`);
return false;
}
};
/**
* Check if we've already reacted to a status
*/
const hasAlreadyReacted = async (statusId: string): Promise<boolean> => {
try {
const reaction = await prisma.reaction.findFirst({
where: { statusId: statusId },
});
return !!reaction;
} catch (error: any) {
console.error(`Error checking reaction status: ${error.message}`);
return true; // Assume we've reacted to avoid spamming on error
}
};
/**
* Record that we've reacted to a status
*/
const recordReaction = async (statusId: string, emojiName: string): Promise<void> => {
try {
await prisma.reaction.create({
data: {
statusId: statusId,
emojiName: emojiName,
reactedAt: new Date(),
},
});
} catch (error: any) {
console.error(`Error recording reaction: ${error.message}`);
}
};
/**
* Decide whether to react to a post (not every post gets a reaction)
*/
const shouldReactToPost = (): boolean => {
// React to roughly 30% of posts
return Math.random() < 0.3;
};
/**
* Get appropriate reaction emojis based on content sentiment/keywords
*/
const getContextualEmoji = (content: string, availableEmojis: string[]): string => {
const contentLower = content.toLowerCase();
// Define emoji categories with keywords
const emojiCategories = {
positive: ['happy', 'smile', 'joy', 'love', 'heart', 'thumbsup', 'fire', 'based'],
negative: ['sad', 'cry', 'angry', 'rage', 'disappointed', 'cringe'],
thinking: ['think', 'hmm', 'brain', 'smart', 'curious'],
laughing: ['laugh', 'lol', 'kek', 'funny', 'haha', 'rofl'],
agreement: ['yes', 'agree', 'nod', 'correct', 'true', 'based'],
surprise: ['wow', 'amazing', 'surprised', 'shock', 'omg'],
};
// Keywords that might indicate sentiment
const sentimentKeywords = {
positive: ['good', 'great', 'awesome', 'nice', 'love', 'happy', 'excellent', 'perfect'],
negative: ['bad', 'terrible', 'hate', 'awful', 'horrible', 'worst', 'sucks'],
funny: ['lol', 'haha', 'funny', 'hilarious', 'joke', 'meme'],
question: ['?', 'what', 'how', 'why', 'when', 'where'],
agreement: ['yes', 'exactly', 'true', 'right', 'correct', 'agree'],
thinking: ['think', 'consider', 'maybe', 'perhaps', 'hmm', 'interesting'],
};
// Check content sentiment and find matching emojis
for (const [sentiment, keywords] of Object.entries(sentimentKeywords)) {
if (keywords.some(keyword => contentLower.includes(keyword))) {
const categoryEmojis = emojiCategories[sentiment as keyof typeof emojiCategories];
if (categoryEmojis) {
const matchingEmojis = availableEmojis.filter(emoji =>
categoryEmojis.some(cat => emoji.toLowerCase().includes(cat))
);
if (matchingEmojis.length > 0) {
return matchingEmojis[Math.floor(Math.random() * matchingEmojis.length)];
}
}
}
}
// Fallback to random emoji from a curated list of common reactions
const commonReactions = availableEmojis.filter(emoji =>
['heart', 'thumbsup', 'fire', 'kek', 'based', 'think', 'smile', 'laugh']
.some(common => emoji.toLowerCase().includes(common))
);
if (commonReactions.length > 0) {
return commonReactions[Math.floor(Math.random() * commonReactions.length)];
}
// Final fallback to any random emoji
return availableEmojis[Math.floor(Math.random() * availableEmojis.length)];
};
/**
* Main function to handle post reactions
*/
const handlePostReaction = async (notification: Notification): Promise<void> => {
try {
const statusId = notification.status.id;
// Check if we should react to this post
if (!shouldReactToPost()) {
return;
}
// Check if we've already reacted
if (await hasAlreadyReacted(statusId)) {
return;
}
// Get available emojis
const emojiList = await getInstanceEmojis();
if (!emojiList || emojiList.length === 0) {
return;
}
// Select a smaller random pool for reactions (5-10 emojis)
const reactionPool = selectRandomEmojis(emojiList, 8);
// Get contextual emoji based on post content
const selectedEmoji = getContextualEmoji(
notification.status.pleroma.content["text/plain"],
reactionPool
);
// React to the post
const success = await reactToStatus(statusId, selectedEmoji);
if (success) {
await recordReaction(statusId, selectedEmoji);
console.log(`Reacted to status ${statusId} with :${selectedEmoji}:`);
}
} catch (error: any) {
console.error(`Error handling post reaction: ${error.message}`);
}
};
export {
deleteNotification,
getInstanceEmojis,
getNotifications,
getStatusContext,
reactToStatus,
handlePostReaction,
hasAlreadyReacted,
};

View File

@ -13,6 +13,7 @@ import {
deleteNotification,
getNotifications,
getStatusContext,
handlePostReaction,
} from "./api.js";
import { storeUserData, storePromptData } from "./prisma.js";
import {
@ -20,7 +21,9 @@ import {
alreadyRespondedTo,
recordPendingResponse,
// trimInputData,
selectRandomEmoji,
// selectRandomEmoji,
selectRandomEmojis,
isLLMRefusal,
shouldContinue,
} from "./util.js";
@ -59,7 +62,8 @@ const ollamaConfig: OllamaConfigOptions = {
// https://replicate.com/blog/how-to-prompt-llama
const generateOllamaRequest = async (
notification: Notification
notification: Notification,
retryAttempt: number = 0
): Promise<OllamaChatResponse | undefined> => {
const {
whitelistOnly,
@ -68,6 +72,7 @@ const generateOllamaRequest = async (
ollamaUrl,
replyWithContext,
} = envConfig;
try {
if (shouldContinue(notification)) {
if (whitelistOnly && !isFromWhitelistedDomain(notification)) {
@ -79,6 +84,7 @@ const generateOllamaRequest = async (
}
await recordPendingResponse(notification);
await storeUserData(notification);
let conversationHistory: PostAncestorsForModel[] = [];
if (replyWithContext) {
const contextPosts = await getStatusContext(notification.status.id);
@ -93,15 +99,20 @@ const generateOllamaRequest = async (
plaintext_content: ancestor.pleroma.content["text/plain"],
};
});
// console.log(conversationHistory);
}
// Simplified user message (remove [/INST] as it's not needed for Llama 3)
const userMessage = `${notification.status.account.fqn} says: ${notification.status.pleroma.content["text/plain"]}`;
let systemContent = ollamaSystemPrompt;
// Get random emojis for this request
const emojiList = await getInstanceEmojis();
let availableEmojis = "";
if (emojiList && emojiList.length > 0) {
const randomEmojis = selectRandomEmojis(emojiList, 20);
availableEmojis = `\n\nAvailable custom emojis you can use in your response (or use none!) (format as :emoji_name:): ${randomEmojis.join(", ")}`;
}
let systemContent = ollamaSystemPrompt + availableEmojis;
if (replyWithContext) {
// Simplified context instructions (avoid heavy JSON; summarize for clarity)
systemContent = `${ollamaSystemPrompt}\n\nPrevious conversation context:\n${conversationHistory
.map(
(post) =>
@ -111,10 +122,15 @@ const generateOllamaRequest = async (
)
.join(
"\n"
)}\nReply as if you are a party to the conversation. If '@nice-ai' is mentioned, respond directly. Prefix usernames with '@' when addressing them.`;
)}\nReply as if you are a party to the conversation. If '@nice-ai' is mentioned, respond directly. Prefix usernames with '@' when addressing them.${availableEmojis}`;
}
// Switch to chat request format (messages array auto-handles Llama 3 template)
// Use different seeds for retry attempts
const currentConfig = {
...ollamaConfig,
seed: retryAttempt > 0 ? Math.floor(Math.random() * 1000000) : ollamaConfig.seed,
};
const ollamaRequestBody: OllamaChatRequest = {
model: ollamaModel,
messages: [
@ -122,16 +138,21 @@ const generateOllamaRequest = async (
{ role: "user", content: userMessage },
],
stream: false,
options: ollamaConfig,
options: currentConfig,
};
// Change endpoint to /api/chat
const response = await fetch(`${ollamaUrl}/api/chat`, {
method: "POST",
body: JSON.stringify(ollamaRequestBody),
});
const ollamaResponse: OllamaChatResponse = await response.json();
// Check for refusal and retry up to 2 times
if (isLLMRefusal(ollamaResponse.message.content) && retryAttempt < 2) {
console.log(`LLM refused to answer (attempt ${retryAttempt + 1}), retrying with different seed...`);
return generateOllamaRequest(notification, retryAttempt + 1);
}
await storePromptData(notification, ollamaResponse);
return ollamaResponse;
}
@ -145,16 +166,11 @@ const postReplyToStatus = async (
ollamaResponseBody: OllamaChatResponse
) => {
const { pleromaInstanceUrl, bearerToken } = envConfig;
const emojiList = await getInstanceEmojis();
let randomEmoji;
if (emojiList) {
randomEmoji = selectRandomEmoji(emojiList);
}
try {
let mentions: string[];
const statusBody: NewStatusBody = {
content_type: "text/markdown",
status: `${ollamaResponseBody.message.content} :${randomEmoji}:`,
status: ollamaResponseBody.message.content,
in_reply_to_id: notification.status.id,
};
if (
@ -247,17 +263,28 @@ const beginFetchCycle = async () => {
await Promise.all(
notifications.map(async (notification) => {
try {
// Handle reactions first (before generating response)
// This way we can react even if response generation fails
await handlePostReaction(notification);
// Then handle the response generation as before
const ollamaResponse = await generateOllamaRequest(notification);
if (ollamaResponse) {
postReplyToStatus(notification, ollamaResponse);
await postReplyToStatus(notification, ollamaResponse);
}
} catch (error: any) {
throw new Error(error.message);
console.error(`Error processing notification ${notification.id}: ${error.message}`);
// Still try to delete the notification to avoid getting stuck
try {
await deleteNotification(notification);
} catch (deleteError: any) {
console.error(`Failed to delete notification: ${deleteError.message}`);
}
}
})
);
}
}, envConfig.fetchInterval); // lower intervals may cause the bot to respond multiple times to the same message, but we try to mitigate this with the deleteNotification function
}, envConfig.fetchInterval);
};
const beginStatusPostInterval = async () => {

View File

@ -98,9 +98,47 @@ const selectRandomEmoji = (emojiList: string[]) => {
return emojiList[Math.floor(Math.random() * emojiList.length)];
};
const selectRandomEmojis = (emojiList: string[], count: number = 20): string[] => {
if (emojiList.length <= count) return emojiList;
const shuffled = [...emojiList].sort(() => 0.5 - Math.random());
return shuffled.slice(0, count);
};
const isLLMRefusal = (response: string): boolean => {
const refusalPatterns = [
/i can't|i cannot|unable to|i'm not able to/i,
/i don't feel comfortable/i,
/i'm not comfortable/i,
/i shouldn't|i won't/i,
/that's not something i can/i,
/i'm not programmed to/i,
/i'm an ai (assistant|language model)/i,
/as an ai/i,
/i apologize, but/i,
/i must decline/i,
/that would be inappropriate/i,
/i'm not supposed to/i,
/i'd rather not/i,
/i prefer not to/i,
/against my guidelines/i,
/violates my programming/i,
];
const normalizedResponse = response.toLowerCase().trim();
// Check if response is too short (likely a refusal)
if (normalizedResponse.length < 20) return true;
// Check for refusal patterns
return refusalPatterns.some(pattern => pattern.test(normalizedResponse));
};
export {
alreadyRespondedTo,
selectRandomEmoji,
selectRandomEmojis,
isLLMRefusal,
trimInputData,
recordPendingResponse,
isFromWhitelistedDomain,

174
types.d.ts vendored
View File

@ -158,48 +158,182 @@ interface PleromaEmojiMetadata {
tags: string[];
}
interface ReactionRequest {
name: string; // emoji name without colons
}
interface ReactionResponse {
name: string;
count: number;
me: boolean;
url?: string;
static_url?: string;
}
/**
* Experimental settings, I wouldn't recommend messing with these if you don't know how they work (I don't either)
*/
export interface OllamaConfigOptions {
/**
* Number of tokens guaranteed to be kept in memory during response generation. Higher values leave less
* possible room for num_ctx
* Number of tokens guaranteed to be kept in memory during response generation.
* Higher values leave less room for num_ctx. Used to preserve important context.
* Default: 0, Range: 0-512
*/
num_keep?: number;
seed?: number;
/**
* Sets maximum of tokens in the response
* Random seed for reproducible outputs. Same seed + same inputs = same output.
* Default: -1 (random), Range: any integer
*/
seed?: number;
/**
* Maximum number of tokens to generate in the response. Controls response length.
* Default: 128, Range: 1-4096+ (model dependent)
*/
num_predict?: number;
top_k?: number;
top_p?: number;
min_p?: number;
typical_p?: number;
repeat_last_n?: number;
/**
* How close of a response should the response be to the original prompt - lower = more focused response
* Limits token selection to top K most probable tokens. Reduces randomness.
* Default: 40, Range: 1-100 (higher = more diverse)
*/
top_k?: number;
/**
* Nucleus sampling - cumulative probability cutoff for token selection.
* Default: 0.9, Range: 0.0-1.0 (lower = more focused)
*/
top_p?: number;
/**
* Alternative to top_p - minimum probability threshold for tokens.
* Default: 0.0, Range: 0.0-1.0 (higher = more selective)
*/
min_p?: number;
/**
* Typical sampling - targets tokens with "typical" probability mass.
* Default: 1.0 (disabled), Range: 0.0-1.0 (lower = less random)
*/
typical_p?: number;
/**
* Number of previous tokens to consider for repetition penalty.
* Default: 64, Range: 0-512
*/
repeat_last_n?: number;
/**
* Randomness/creativity control. Lower = more deterministic, higher = more creative.
* Default: 0.8, Range: 0.0-2.0 (sweet spot: 0.1-1.2)
*/
temperature?: number;
repeat_penalty?: number;
presence_penalty?: number;
frequency_penalty?: number;
mirostat?: number;
mirostat_tau?: number;
mirostat_eta?: number;
penalize_newline?: boolean;
stop?: string[];
numa?: boolean;
/**
* Number of tokens for the prompt to keep in memory for the response, minus the value of num_keep
* Penalty for repeating tokens. Higher values reduce repetition.
* Default: 1.1, Range: 0.0-2.0 (1.0 = no penalty)
*/
repeat_penalty?: number;
/**
* Penalty for using tokens that have already appeared (OpenAI-style).
* Default: 0.0, Range: -2.0 to 2.0
*/
presence_penalty?: number;
/**
* Penalty proportional to token frequency in text (OpenAI-style).
* Default: 0.0, Range: -2.0 to 2.0
*/
frequency_penalty?: number;
/**
* Enables Mirostat sampling algorithm (0=disabled, 1=v1, 2=v2).
* Default: 0, Range: 0, 1, or 2
*/
mirostat?: number;
/**
* Target entropy for Mirostat. Controls coherence vs creativity balance.
* Default: 5.0, Range: 0.0-10.0
*/
mirostat_tau?: number;
/**
* Learning rate for Mirostat. How quickly it adapts.
* Default: 0.1, Range: 0.001-1.0
*/
mirostat_eta?: number;
/**
* Apply penalty to newline tokens to control formatting.
* Default: true
*/
penalize_newline?: boolean;
/**
* Array of strings that will stop generation when encountered.
* Default: [], Example: ["\n", "User:", "###"]
*/
stop?: string[];
/**
* Enable NUMA (Non-Uniform Memory Access) optimization.
* Default: false (Linux systems may benefit from true)
*/
numa?: boolean;
/**
* Context window size - total tokens for prompt + response.
* Default: 2048, Range: 512-32768+ (model dependent, affects memory usage)
*/
num_ctx?: number;
/**
* Batch size for prompt processing. Higher = faster but more memory.
* Default: 512, Range: 1-2048
*/
num_batch?: number;
/**
* Number of GPU layers to offload. -1 = auto, 0 = CPU only.
* Default: -1, Range: -1 to model layer count
*/
num_gpu?: number;
/**
* Primary GPU device ID for multi-GPU setups.
* Default: 0, Range: 0 to (GPU count - 1)
*/
main_gpu?: number;
/**
* Optimize for low VRAM usage at cost of speed.
* Default: false
*/
low_vram?: boolean;
/**
* Only load vocabulary, skip weights. For tokenization only.
* Default: false
*/
vocab_only?: boolean;
/**
* Use memory mapping for model files (faster loading).
* Default: true
*/
use_mmap?: boolean;
/**
* Lock model in memory to prevent swapping.
* Default: false (enable for consistent performance)
*/
use_mlock?: boolean;
/**
* Number of CPU threads for inference.
* Default: auto-detected, Range: 1 to CPU core count
*/
num_thread?: number;
}