Compare commits
3 Commits
733a41a35c
...
95d2854548
Author | SHA1 | Date | |
---|---|---|---|
95d2854548 | |||
2430047d45 | |||
834e415f11 |
@ -27,4 +27,49 @@ model User {
|
|||||||
id Int @id @default(autoincrement())
|
id Int @id @default(autoincrement())
|
||||||
userFqn String @unique
|
userFqn String @unique
|
||||||
lastRespondedTo DateTime?
|
lastRespondedTo DateTime?
|
||||||
|
memory UserMemory?
|
||||||
}
|
}
|
||||||
|
|
||||||
|
model Reaction {
|
||||||
|
id Int @id @default(autoincrement())
|
||||||
|
statusId String // The Pleroma status ID we reacted to
|
||||||
|
emojiName String // The emoji we used to react
|
||||||
|
reactedAt DateTime @default(now())
|
||||||
|
createdAt DateTime @default(now())
|
||||||
|
|
||||||
|
@@unique([statusId]) // Prevent multiple reactions to same status
|
||||||
|
@@map("reactions")
|
||||||
|
}
|
||||||
|
|
||||||
|
model UserMemory {
|
||||||
|
id Int @id @default(autoincrement())
|
||||||
|
userFqn String @unique
|
||||||
|
personalityTraits String @default("[]") // JSON string of personality observations
|
||||||
|
runningGags String @default("[]") // JSON string of running jokes/gags
|
||||||
|
relationships String @default("[]") // JSON string of relationship dynamics with bot
|
||||||
|
interests String @default("[]") // JSON string of user interests
|
||||||
|
backstory String @default("[]") // JSON string of biographical elements
|
||||||
|
lastInteractionSummary String? // Brief summary of last chat
|
||||||
|
interactionCount Int @default(0)
|
||||||
|
lastUpdated DateTime @default(now()) @updatedAt
|
||||||
|
createdAt DateTime @default(now())
|
||||||
|
|
||||||
|
// Relation to existing User model
|
||||||
|
user User @relation(fields: [userFqn], references: [userFqn])
|
||||||
|
|
||||||
|
@@map("user_memories")
|
||||||
|
}
|
||||||
|
|
||||||
|
model InteractionLog {
|
||||||
|
id Int @id @default(autoincrement())
|
||||||
|
userFqn String
|
||||||
|
conversationSnapshot String // Key parts of the conversation
|
||||||
|
sentiment String // positive, negative, teasing, etc.
|
||||||
|
extractedTopics String @default("[]") // JSON string of topics discussed
|
||||||
|
memorableQuotes String @default("[]") // JSON string of funny/notable quotes
|
||||||
|
botEmotionalState String? // How the bot should "feel" about this interaction
|
||||||
|
createdAt DateTime @default(now())
|
||||||
|
|
||||||
|
@@map("interaction_logs")
|
||||||
|
@@index([userFqn, createdAt])
|
||||||
|
}
|
331
src/api.ts
331
src/api.ts
@ -1,5 +1,9 @@
|
|||||||
import { envConfig, prisma } from "./main.js";
|
import { envConfig, prisma } from "./main.js";
|
||||||
import { PleromaEmoji, Notification, ContextResponse } from "../types.js";
|
import { PleromaEmoji, Notification, ContextResponse } from "../types.js";
|
||||||
|
import { selectRandomEmojis } from "./util.js";
|
||||||
|
import { getUserMemory, parseJsonArray, stringifyJsonArray } from "./memory.js";
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
const getNotifications = async () => {
|
const getNotifications = async () => {
|
||||||
const { bearerToken, pleromaInstanceUrl } = envConfig;
|
const { bearerToken, pleromaInstanceUrl } = envConfig;
|
||||||
@ -98,9 +102,336 @@ const deleteNotification = async (notification: Notification) => {
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* React to a status with a random emoji
|
||||||
|
*/
|
||||||
|
const reactToStatus = async (statusId: string, emojiName: string): Promise<boolean> => {
|
||||||
|
const { bearerToken, pleromaInstanceUrl } = envConfig;
|
||||||
|
|
||||||
|
try {
|
||||||
|
const response = await fetch(
|
||||||
|
`${pleromaInstanceUrl}/api/v1/statuses/${statusId}/react/${emojiName}`,
|
||||||
|
{
|
||||||
|
method: "PUT",
|
||||||
|
headers: {
|
||||||
|
Authorization: `Bearer ${bearerToken}`,
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
);
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
console.error(`Failed to react to status ${statusId}: ${response.status} - ${response.statusText}`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error reacting to status ${statusId}: ${error.message}`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if we've already reacted to a status
|
||||||
|
*/
|
||||||
|
const hasAlreadyReacted = async (statusId: string): Promise<boolean> => {
|
||||||
|
try {
|
||||||
|
const reaction = await prisma.reaction.findFirst({
|
||||||
|
where: { statusId: statusId },
|
||||||
|
});
|
||||||
|
return !!reaction;
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error checking reaction status: ${error.message}`);
|
||||||
|
return true; // Assume we've reacted to avoid spamming on error
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Record that we've reacted to a status
|
||||||
|
*/
|
||||||
|
const recordReaction = async (statusId: string, emojiName: string): Promise<void> => {
|
||||||
|
try {
|
||||||
|
await prisma.reaction.create({
|
||||||
|
data: {
|
||||||
|
statusId: statusId,
|
||||||
|
emojiName: emojiName,
|
||||||
|
reactedAt: new Date(),
|
||||||
|
},
|
||||||
|
});
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error recording reaction: ${error.message}`);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Decide whether to react to a post (not every post gets a reaction)
|
||||||
|
*/
|
||||||
|
const shouldReactToPost = (): boolean => {
|
||||||
|
// React to roughly 30% of posts
|
||||||
|
return Math.random() < 0.3;
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get appropriate reaction emojis based on content sentiment/keywords
|
||||||
|
*/
|
||||||
|
const getContextualEmoji = (content: string, availableEmojis: string[]): string => {
|
||||||
|
const contentLower = content.toLowerCase();
|
||||||
|
|
||||||
|
// Define emoji categories with keywords
|
||||||
|
const emojiCategories = {
|
||||||
|
positive: ['happy', 'smile', 'joy', 'love', 'heart', 'thumbsup', 'fire', 'based'],
|
||||||
|
negative: ['sad', 'cry', 'angry', 'rage', 'disappointed', 'cringe'],
|
||||||
|
thinking: ['think', 'hmm', 'brain', 'smart', 'curious'],
|
||||||
|
laughing: ['laugh', 'lol', 'kek', 'funny', 'haha', 'rofl'],
|
||||||
|
agreement: ['yes', 'agree', 'nod', 'correct', 'true', 'based'],
|
||||||
|
surprise: ['wow', 'amazing', 'surprised', 'shock', 'omg'],
|
||||||
|
};
|
||||||
|
|
||||||
|
// Keywords that might indicate sentiment
|
||||||
|
const sentimentKeywords = {
|
||||||
|
positive: ['good', 'great', 'awesome', 'nice', 'love', 'happy', 'excellent', 'perfect'],
|
||||||
|
negative: ['bad', 'terrible', 'hate', 'awful', 'horrible', 'worst', 'sucks'],
|
||||||
|
funny: ['lol', 'haha', 'funny', 'hilarious', 'joke', 'meme'],
|
||||||
|
question: ['?', 'what', 'how', 'why', 'when', 'where'],
|
||||||
|
agreement: ['yes', 'exactly', 'true', 'right', 'correct', 'agree'],
|
||||||
|
thinking: ['think', 'consider', 'maybe', 'perhaps', 'hmm', 'interesting'],
|
||||||
|
};
|
||||||
|
|
||||||
|
// Check content sentiment and find matching emojis
|
||||||
|
for (const [sentiment, keywords] of Object.entries(sentimentKeywords)) {
|
||||||
|
if (keywords.some(keyword => contentLower.includes(keyword))) {
|
||||||
|
const categoryEmojis = emojiCategories[sentiment as keyof typeof emojiCategories];
|
||||||
|
if (categoryEmojis) {
|
||||||
|
const matchingEmojis = availableEmojis.filter(emoji =>
|
||||||
|
categoryEmojis.some(cat => emoji.toLowerCase().includes(cat))
|
||||||
|
);
|
||||||
|
if (matchingEmojis.length > 0) {
|
||||||
|
return matchingEmojis[Math.floor(Math.random() * matchingEmojis.length)];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Fallback to random emoji from a curated list of common reactions
|
||||||
|
const commonReactions = availableEmojis.filter(emoji =>
|
||||||
|
['heart', 'thumbsup', 'fire', 'kek', 'based', 'think', 'smile', 'laugh']
|
||||||
|
.some(common => emoji.toLowerCase().includes(common))
|
||||||
|
);
|
||||||
|
|
||||||
|
if (commonReactions.length > 0) {
|
||||||
|
return commonReactions[Math.floor(Math.random() * commonReactions.length)];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Final fallback to any random emoji
|
||||||
|
return availableEmojis[Math.floor(Math.random() * availableEmojis.length)];
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Main function to handle post reactions
|
||||||
|
*/
|
||||||
|
const handlePostReaction = async (notification: Notification): Promise<void> => {
|
||||||
|
try {
|
||||||
|
const statusId = notification.status.id;
|
||||||
|
|
||||||
|
// Check if we should react to this post
|
||||||
|
if (!shouldReactToPost()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if we've already reacted
|
||||||
|
if (await hasAlreadyReacted(statusId)) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get available emojis
|
||||||
|
const emojiList = await getInstanceEmojis();
|
||||||
|
if (!emojiList || emojiList.length === 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Select a smaller random pool for reactions (5-10 emojis)
|
||||||
|
const reactionPool = selectRandomEmojis(emojiList, 8);
|
||||||
|
|
||||||
|
// Get contextual emoji based on post content
|
||||||
|
const selectedEmoji = getContextualEmoji(
|
||||||
|
notification.status.pleroma.content["text/plain"],
|
||||||
|
reactionPool
|
||||||
|
);
|
||||||
|
|
||||||
|
// React to the post
|
||||||
|
const success = await reactToStatus(statusId, selectedEmoji);
|
||||||
|
|
||||||
|
if (success) {
|
||||||
|
await recordReaction(statusId, selectedEmoji);
|
||||||
|
console.log(`Reacted to status ${statusId} with :${selectedEmoji}:`);
|
||||||
|
}
|
||||||
|
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error handling post reaction: ${error.message}`);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get detailed user memory for admin/debugging
|
||||||
|
*/
|
||||||
|
const getUserMemoryDetails = async (userFqn: string) => {
|
||||||
|
try {
|
||||||
|
const memory = await prisma.userMemory.findUnique({
|
||||||
|
where: { userFqn: userFqn },
|
||||||
|
include: {
|
||||||
|
user: true
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!memory) return null;
|
||||||
|
|
||||||
|
// Get recent interaction logs
|
||||||
|
const recentLogs = await prisma.interactionLog.findMany({
|
||||||
|
where: { userFqn: userFqn },
|
||||||
|
orderBy: { createdAt: 'desc' },
|
||||||
|
take: 10
|
||||||
|
});
|
||||||
|
|
||||||
|
// Parse JSON strings for better readability
|
||||||
|
const parsedMemory = {
|
||||||
|
...memory,
|
||||||
|
personalityTraits: parseJsonArray(memory.personalityTraits),
|
||||||
|
runningGags: parseJsonArray(memory.runningGags),
|
||||||
|
relationships: parseJsonArray(memory.relationships),
|
||||||
|
interests: parseJsonArray(memory.interests),
|
||||||
|
backstory: parseJsonArray(memory.backstory),
|
||||||
|
recentInteractions: recentLogs.map(log => ({
|
||||||
|
...log,
|
||||||
|
extractedTopics: parseJsonArray(log.extractedTopics),
|
||||||
|
memorableQuotes: parseJsonArray(log.memorableQuotes)
|
||||||
|
}))
|
||||||
|
};
|
||||||
|
|
||||||
|
return parsedMemory;
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error getting user memory details: ${error.message}`);
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Manually add or remove memory elements (for admin use)
|
||||||
|
*/
|
||||||
|
const modifyUserMemory = async (
|
||||||
|
userFqn: string,
|
||||||
|
action: 'add' | 'remove',
|
||||||
|
category: 'personalityTraits' | 'runningGags' | 'relationships' | 'interests' | 'backstory',
|
||||||
|
item: string
|
||||||
|
) => {
|
||||||
|
try {
|
||||||
|
const memory = await getUserMemory(userFqn);
|
||||||
|
if (!memory) return false;
|
||||||
|
|
||||||
|
const currentArray = parseJsonArray(memory[category] as string);
|
||||||
|
let updatedArray: string[];
|
||||||
|
|
||||||
|
if (action === 'add') {
|
||||||
|
updatedArray = [...new Set([...currentArray, item])]; // Add without duplicates
|
||||||
|
} else {
|
||||||
|
updatedArray = currentArray.filter(existingItem => existingItem !== item);
|
||||||
|
}
|
||||||
|
|
||||||
|
await prisma.userMemory.update({
|
||||||
|
where: { userFqn: userFqn },
|
||||||
|
data: { [category]: stringifyJsonArray(updatedArray) }
|
||||||
|
});
|
||||||
|
|
||||||
|
console.log(`${action === 'add' ? 'Added' : 'Removed'} "${item}" ${action === 'add' ? 'to' : 'from'} ${category} for ${userFqn}`);
|
||||||
|
return true;
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error modifying user memory: ${error.message}`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
const getMemoryStats = async () => {
|
||||||
|
try {
|
||||||
|
const totalUsers = await prisma.userMemory.count();
|
||||||
|
const totalInteractions = await prisma.interactionLog.count();
|
||||||
|
|
||||||
|
const mostActiveUsers = await prisma.userMemory.findMany({
|
||||||
|
orderBy: { interactionCount: 'desc' },
|
||||||
|
take: 10,
|
||||||
|
select: {
|
||||||
|
userFqn: true,
|
||||||
|
interactionCount: true,
|
||||||
|
personalityTraits: true,
|
||||||
|
runningGags: true
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
// Parse JSON strings for the active users
|
||||||
|
const parsedActiveUsers = mostActiveUsers.map(user => ({
|
||||||
|
...user,
|
||||||
|
personalityTraits: parseJsonArray(user.personalityTraits),
|
||||||
|
runningGags: parseJsonArray(user.runningGags)
|
||||||
|
}));
|
||||||
|
|
||||||
|
const sentimentStats = await prisma.interactionLog.groupBy({
|
||||||
|
by: ['sentiment'],
|
||||||
|
_count: { sentiment: true }
|
||||||
|
});
|
||||||
|
|
||||||
|
return {
|
||||||
|
totalUsers,
|
||||||
|
totalInteractions,
|
||||||
|
mostActiveUsers: parsedActiveUsers,
|
||||||
|
sentimentDistribution: sentimentStats
|
||||||
|
};
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error getting memory stats: ${error.message}`);
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
const resetUserMemory = async (userFqn: string) => {
|
||||||
|
try {
|
||||||
|
await prisma.userMemory.update({
|
||||||
|
where: { userFqn: userFqn },
|
||||||
|
data: {
|
||||||
|
personalityTraits: stringifyJsonArray([]),
|
||||||
|
runningGags: stringifyJsonArray([]),
|
||||||
|
relationships: stringifyJsonArray([]),
|
||||||
|
interests: stringifyJsonArray([]),
|
||||||
|
backstory: stringifyJsonArray([]),
|
||||||
|
lastInteractionSummary: null,
|
||||||
|
interactionCount: 0,
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
// Optionally delete interaction logs too
|
||||||
|
await prisma.interactionLog.deleteMany({
|
||||||
|
where: { userFqn: userFqn }
|
||||||
|
});
|
||||||
|
|
||||||
|
console.log(`Reset memory for ${userFqn}`);
|
||||||
|
return true;
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error resetting user memory: ${error.message}`);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
export {
|
export {
|
||||||
deleteNotification,
|
deleteNotification,
|
||||||
getInstanceEmojis,
|
getInstanceEmojis,
|
||||||
getNotifications,
|
getNotifications,
|
||||||
getStatusContext,
|
getStatusContext,
|
||||||
|
reactToStatus,
|
||||||
|
handlePostReaction,
|
||||||
|
hasAlreadyReacted,
|
||||||
|
getUserMemoryDetails,
|
||||||
|
modifyUserMemory,
|
||||||
|
getMemoryStats,
|
||||||
|
resetUserMemory,
|
||||||
};
|
};
|
||||||
|
123
src/main.ts
123
src/main.ts
@ -13,6 +13,7 @@ import {
|
|||||||
deleteNotification,
|
deleteNotification,
|
||||||
getNotifications,
|
getNotifications,
|
||||||
getStatusContext,
|
getStatusContext,
|
||||||
|
handlePostReaction,
|
||||||
} from "./api.js";
|
} from "./api.js";
|
||||||
import { storeUserData, storePromptData } from "./prisma.js";
|
import { storeUserData, storePromptData } from "./prisma.js";
|
||||||
import {
|
import {
|
||||||
@ -20,9 +21,17 @@ import {
|
|||||||
alreadyRespondedTo,
|
alreadyRespondedTo,
|
||||||
recordPendingResponse,
|
recordPendingResponse,
|
||||||
// trimInputData,
|
// trimInputData,
|
||||||
selectRandomEmoji,
|
// selectRandomEmoji,
|
||||||
|
selectRandomEmojis,
|
||||||
|
isLLMRefusal,
|
||||||
shouldContinue,
|
shouldContinue,
|
||||||
|
processConversationHistory,
|
||||||
} from "./util.js";
|
} from "./util.js";
|
||||||
|
import {
|
||||||
|
analyzeInteraction,
|
||||||
|
updateUserMemory,
|
||||||
|
generateMemoryContext,
|
||||||
|
} from "./memory.js";
|
||||||
|
|
||||||
export const prisma = new PrismaClient();
|
export const prisma = new PrismaClient();
|
||||||
|
|
||||||
@ -59,7 +68,8 @@ const ollamaConfig: OllamaConfigOptions = {
|
|||||||
// https://replicate.com/blog/how-to-prompt-llama
|
// https://replicate.com/blog/how-to-prompt-llama
|
||||||
|
|
||||||
const generateOllamaRequest = async (
|
const generateOllamaRequest = async (
|
||||||
notification: Notification
|
notification: Notification,
|
||||||
|
retryAttempt: number = 0
|
||||||
): Promise<OllamaChatResponse | undefined> => {
|
): Promise<OllamaChatResponse | undefined> => {
|
||||||
const {
|
const {
|
||||||
whitelistOnly,
|
whitelistOnly,
|
||||||
@ -68,6 +78,7 @@ const generateOllamaRequest = async (
|
|||||||
ollamaUrl,
|
ollamaUrl,
|
||||||
replyWithContext,
|
replyWithContext,
|
||||||
} = envConfig;
|
} = envConfig;
|
||||||
|
|
||||||
try {
|
try {
|
||||||
if (shouldContinue(notification)) {
|
if (shouldContinue(notification)) {
|
||||||
if (whitelistOnly && !isFromWhitelistedDomain(notification)) {
|
if (whitelistOnly && !isFromWhitelistedDomain(notification)) {
|
||||||
@ -79,7 +90,13 @@ const generateOllamaRequest = async (
|
|||||||
}
|
}
|
||||||
await recordPendingResponse(notification);
|
await recordPendingResponse(notification);
|
||||||
await storeUserData(notification);
|
await storeUserData(notification);
|
||||||
|
|
||||||
|
const userFqn = notification.status.account.fqn;
|
||||||
|
const userMessage = notification.status.pleroma.content["text/plain"];
|
||||||
|
|
||||||
let conversationHistory: PostAncestorsForModel[] = [];
|
let conversationHistory: PostAncestorsForModel[] = [];
|
||||||
|
let processedContext = "";
|
||||||
|
|
||||||
if (replyWithContext) {
|
if (replyWithContext) {
|
||||||
const contextPosts = await getStatusContext(notification.status.id);
|
const contextPosts = await getStatusContext(notification.status.id);
|
||||||
if (!contextPosts?.ancestors || !contextPosts) {
|
if (!contextPosts?.ancestors || !contextPosts) {
|
||||||
@ -93,45 +110,61 @@ const generateOllamaRequest = async (
|
|||||||
plaintext_content: ancestor.pleroma.content["text/plain"],
|
plaintext_content: ancestor.pleroma.content["text/plain"],
|
||||||
};
|
};
|
||||||
});
|
});
|
||||||
// console.log(conversationHistory);
|
|
||||||
|
// Process context - summarize if too long
|
||||||
|
processedContext = await processConversationHistory(conversationHistory);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Simplified user message (remove [/INST] as it's not needed for Llama 3)
|
const formattedUserMessage = `${userFqn} says: ${userMessage}`;
|
||||||
const userMessage = `${notification.status.account.fqn} says: ${notification.status.pleroma.content["text/plain"]}`;
|
|
||||||
|
|
||||||
let systemContent = ollamaSystemPrompt;
|
// Get user memory context
|
||||||
|
const memoryContext = await generateMemoryContext(userFqn);
|
||||||
|
|
||||||
|
// Get random emojis for this request
|
||||||
|
const emojiList = await getInstanceEmojis();
|
||||||
|
let availableEmojis = "";
|
||||||
|
if (emojiList && emojiList.length > 0) {
|
||||||
|
const randomEmojis = selectRandomEmojis(emojiList, 20);
|
||||||
|
availableEmojis = `\n\nAvailable custom emojis you can use in your response (format as :emoji_name:): ${randomEmojis.join(", ")}`;
|
||||||
|
}
|
||||||
|
|
||||||
|
let systemContent = ollamaSystemPrompt + memoryContext + availableEmojis;
|
||||||
|
|
||||||
if (replyWithContext) {
|
if (replyWithContext) {
|
||||||
// Simplified context instructions (avoid heavy JSON; summarize for clarity)
|
systemContent = `${ollamaSystemPrompt}${memoryContext}\n\nPrevious conversation context:\n${processedContext}\nReply as if you are a party to the conversation. If '@nice-ai' is mentioned, respond directly. Prefix usernames with '@' when addressing them.${availableEmojis}`;
|
||||||
systemContent = `${ollamaSystemPrompt}\n\nPrevious conversation context:\n${conversationHistory
|
|
||||||
.map(
|
|
||||||
(post) =>
|
|
||||||
`${post.account_fqn} (to ${post.mentions.join(", ")}): ${
|
|
||||||
post.plaintext_content
|
|
||||||
}`
|
|
||||||
)
|
|
||||||
.join(
|
|
||||||
"\n"
|
|
||||||
)}\nReply as if you are a party to the conversation. If '@nice-ai' is mentioned, respond directly. Prefix usernames with '@' when addressing them.`;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Switch to chat request format (messages array auto-handles Llama 3 template)
|
// Use different seeds for retry attempts
|
||||||
|
const currentConfig = {
|
||||||
|
...ollamaConfig,
|
||||||
|
seed: retryAttempt > 0 ? Math.floor(Math.random() * 1000000) : ollamaConfig.seed,
|
||||||
|
};
|
||||||
|
|
||||||
const ollamaRequestBody: OllamaChatRequest = {
|
const ollamaRequestBody: OllamaChatRequest = {
|
||||||
model: ollamaModel,
|
model: ollamaModel,
|
||||||
messages: [
|
messages: [
|
||||||
{ role: "system", content: systemContent as string },
|
{ role: "system", content: systemContent as string },
|
||||||
{ role: "user", content: userMessage },
|
{ role: "user", content: formattedUserMessage },
|
||||||
],
|
],
|
||||||
stream: false,
|
stream: false,
|
||||||
options: ollamaConfig,
|
options: currentConfig,
|
||||||
};
|
};
|
||||||
|
|
||||||
// Change endpoint to /api/chat
|
|
||||||
const response = await fetch(`${ollamaUrl}/api/chat`, {
|
const response = await fetch(`${ollamaUrl}/api/chat`, {
|
||||||
method: "POST",
|
method: "POST",
|
||||||
body: JSON.stringify(ollamaRequestBody),
|
body: JSON.stringify(ollamaRequestBody),
|
||||||
});
|
});
|
||||||
const ollamaResponse: OllamaChatResponse = await response.json();
|
const ollamaResponse: OllamaChatResponse = await response.json();
|
||||||
|
|
||||||
|
// Check for refusal and retry up to 2 times
|
||||||
|
if (isLLMRefusal(ollamaResponse.message.content) && retryAttempt < 2) {
|
||||||
|
console.log(`LLM refused to answer (attempt ${retryAttempt + 1}), retrying with different seed...`);
|
||||||
|
return generateOllamaRequest(notification, retryAttempt + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Analyze interaction and update user memory (async, don't block response)
|
||||||
|
analyzeAndUpdateMemory(userFqn, userMessage, ollamaResponse.message.content);
|
||||||
|
|
||||||
await storePromptData(notification, ollamaResponse);
|
await storePromptData(notification, ollamaResponse);
|
||||||
return ollamaResponse;
|
return ollamaResponse;
|
||||||
}
|
}
|
||||||
@ -140,21 +173,40 @@ const generateOllamaRequest = async (
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Analyze interaction and update user memory (runs asynchronously)
|
||||||
|
*/
|
||||||
|
const analyzeAndUpdateMemory = async (
|
||||||
|
userFqn: string,
|
||||||
|
userMessage: string,
|
||||||
|
botResponse: string
|
||||||
|
): Promise<void> => {
|
||||||
|
try {
|
||||||
|
// Run analysis in background - don't await to avoid blocking response
|
||||||
|
const analysis = await analyzeInteraction(userMessage, botResponse, userFqn);
|
||||||
|
|
||||||
|
await updateUserMemory({
|
||||||
|
userFqn,
|
||||||
|
conversationContent: userMessage,
|
||||||
|
botResponse,
|
||||||
|
analysis,
|
||||||
|
});
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Memory analysis failed for ${userFqn}: ${error.message}`);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
const postReplyToStatus = async (
|
const postReplyToStatus = async (
|
||||||
notification: Notification,
|
notification: Notification,
|
||||||
ollamaResponseBody: OllamaChatResponse
|
ollamaResponseBody: OllamaChatResponse
|
||||||
) => {
|
) => {
|
||||||
const { pleromaInstanceUrl, bearerToken } = envConfig;
|
const { pleromaInstanceUrl, bearerToken } = envConfig;
|
||||||
const emojiList = await getInstanceEmojis();
|
|
||||||
let randomEmoji;
|
|
||||||
if (emojiList) {
|
|
||||||
randomEmoji = selectRandomEmoji(emojiList);
|
|
||||||
}
|
|
||||||
try {
|
try {
|
||||||
let mentions: string[];
|
let mentions: string[];
|
||||||
const statusBody: NewStatusBody = {
|
const statusBody: NewStatusBody = {
|
||||||
content_type: "text/markdown",
|
content_type: "text/markdown",
|
||||||
status: `${ollamaResponseBody.message.content} :${randomEmoji}:`,
|
status: ollamaResponseBody.message.content,
|
||||||
in_reply_to_id: notification.status.id,
|
in_reply_to_id: notification.status.id,
|
||||||
};
|
};
|
||||||
if (
|
if (
|
||||||
@ -247,17 +299,28 @@ const beginFetchCycle = async () => {
|
|||||||
await Promise.all(
|
await Promise.all(
|
||||||
notifications.map(async (notification) => {
|
notifications.map(async (notification) => {
|
||||||
try {
|
try {
|
||||||
|
// Handle reactions first (before generating response)
|
||||||
|
// This way we can react even if response generation fails
|
||||||
|
await handlePostReaction(notification);
|
||||||
|
|
||||||
|
// Then handle the response generation as before
|
||||||
const ollamaResponse = await generateOllamaRequest(notification);
|
const ollamaResponse = await generateOllamaRequest(notification);
|
||||||
if (ollamaResponse) {
|
if (ollamaResponse) {
|
||||||
postReplyToStatus(notification, ollamaResponse);
|
await postReplyToStatus(notification, ollamaResponse);
|
||||||
}
|
}
|
||||||
} catch (error: any) {
|
} catch (error: any) {
|
||||||
throw new Error(error.message);
|
console.error(`Error processing notification ${notification.id}: ${error.message}`);
|
||||||
|
// Still try to delete the notification to avoid getting stuck
|
||||||
|
try {
|
||||||
|
await deleteNotification(notification);
|
||||||
|
} catch (deleteError: any) {
|
||||||
|
console.error(`Failed to delete notification: ${deleteError.message}`);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
}, envConfig.fetchInterval); // lower intervals may cause the bot to respond multiple times to the same message, but we try to mitigate this with the deleteNotification function
|
}, envConfig.fetchInterval);
|
||||||
};
|
};
|
||||||
|
|
||||||
const beginStatusPostInterval = async () => {
|
const beginStatusPostInterval = async () => {
|
||||||
|
323
src/memory.ts
Normal file
323
src/memory.ts
Normal file
@ -0,0 +1,323 @@
|
|||||||
|
/**
|
||||||
|
* ADAPTIVE MEMORY SYSTEM FOR FEDIVERSE CHATBOT
|
||||||
|
*
|
||||||
|
* This system maintains persistent, evolving user profiles to enable personalized
|
||||||
|
* interactions across chat sessions. It uses LLM-based analysis to extract and
|
||||||
|
* categorize user traits, then builds context for future conversations.
|
||||||
|
*
|
||||||
|
* ARCHITECTURE:
|
||||||
|
* - UserMemory: Core profile (personality, gags, relationships, interests, backstory)
|
||||||
|
* - InteractionLog: Historical conversation snapshots with sentiment analysis
|
||||||
|
* - JSON string arrays in SQLite for flexible data storage
|
||||||
|
*
|
||||||
|
* WORKFLOW:
|
||||||
|
* 1. Each user message + bot response gets analyzed by Ollama
|
||||||
|
* 2. Extract personality traits, running gags, relationship dynamics, etc.
|
||||||
|
* 3. Merge new insights with existing profile (deduplication)
|
||||||
|
* 4. Generate memory context string for next conversation's system prompt
|
||||||
|
* 5. Log interaction with sentiment and notable quotes
|
||||||
|
*
|
||||||
|
* MEMORY CATEGORIES:
|
||||||
|
* - personalityTraits: User characteristics (sarcastic, protective, etc.)
|
||||||
|
* - runningGags: Recurring jokes, memes, fake claims between user and bot
|
||||||
|
* - relationships: How user treats bot (mean, protective, flirty)
|
||||||
|
* - interests: Hobbies, topics user cares about
|
||||||
|
* - backstory: Biographical info, "lore" (real or fabricated)
|
||||||
|
*
|
||||||
|
* CURRENT LIMITATIONS:
|
||||||
|
* - No memory aging/decay - old info persists indefinitely
|
||||||
|
* - Simple deduplication - similar but not identical entries accumulate
|
||||||
|
* - No relevance scoring - stale assumptions carry same weight as recent ones
|
||||||
|
* - Fixed array limits may truncate important long-term patterns
|
||||||
|
*
|
||||||
|
* RECOMMENDED IMPROVEMENTS:
|
||||||
|
* - Add timestamp-based relevance weighting
|
||||||
|
* - Implement semantic similarity checks for better deduplication
|
||||||
|
* - Add contradiction detection to update outdated assumptions
|
||||||
|
* - Consider LRU-style eviction instead of simple truncation
|
||||||
|
*/
|
||||||
|
|
||||||
|
// Updated memory.ts with JSON string handling for SQLite
|
||||||
|
import { prisma } from "./main.js";
|
||||||
|
import { envConfig } from "./main.js";
|
||||||
|
import { InteractionAnalysis, MemoryUpdateRequest, OllamaChatRequest, OllamaChatResponse } from "../types.js";
|
||||||
|
|
||||||
|
// Helper functions for JSON string array handling
|
||||||
|
const parseJsonArray = (jsonString: string): string[] => {
|
||||||
|
try {
|
||||||
|
const parsed = JSON.parse(jsonString);
|
||||||
|
return Array.isArray(parsed) ? parsed : [];
|
||||||
|
} catch {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
const stringifyJsonArray = (array: string[]): string => {
|
||||||
|
return JSON.stringify(array);
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Analyze a conversation to extract user personality, gags, and relationship dynamics
|
||||||
|
*/
|
||||||
|
const analyzeInteraction = async (
|
||||||
|
userMessage: string,
|
||||||
|
botResponse: string,
|
||||||
|
userFqn: string
|
||||||
|
): Promise<InteractionAnalysis> => {
|
||||||
|
const { ollamaUrl, ollamaModel } = envConfig;
|
||||||
|
|
||||||
|
const analysisPrompt = `Analyze this conversation between a user and a cute female AI chatbot named Lexi. Extract personality traits, running gags, relationship dynamics, and interesting facts.
|
||||||
|
|
||||||
|
User (${userFqn}): ${userMessage}
|
||||||
|
Bot (Lexi): ${botResponse}
|
||||||
|
|
||||||
|
Please analyze and respond with a JSON object containing:
|
||||||
|
{
|
||||||
|
"sentiment": "positive|negative|neutral|teasing|flirty|aggressive",
|
||||||
|
"topics": ["topic1", "topic2"],
|
||||||
|
"personalityObservations": ["trait1", "trait2"],
|
||||||
|
"runningGagUpdates": ["gag1", "gag2"],
|
||||||
|
"relationshipUpdates": ["relationship_change1"],
|
||||||
|
"interestMentions": ["interest1", "interest2"],
|
||||||
|
"backstoryElements": ["fact1", "fact2"],
|
||||||
|
"memorableQuotes": ["quote1", "quote2"]
|
||||||
|
}
|
||||||
|
|
||||||
|
Focus on:
|
||||||
|
- Personality traits (sarcastic, teasing, protective, joker, etc.)
|
||||||
|
- Running gags and memes (fake claims, recurring jokes, etc.)
|
||||||
|
- How they treat the bot (mean, nice, flirty, protective)
|
||||||
|
- Interests and hobbies mentioned
|
||||||
|
- Any biographical info (real or fake "lore")
|
||||||
|
- Memorable or funny quotes
|
||||||
|
|
||||||
|
Keep entries brief and specific. Empty arrays are fine if nothing notable.`;
|
||||||
|
|
||||||
|
try {
|
||||||
|
const analysisRequest: OllamaChatRequest = {
|
||||||
|
model: ollamaModel,
|
||||||
|
messages: [
|
||||||
|
{
|
||||||
|
role: "system",
|
||||||
|
content: "You are an expert at analyzing social interactions and extracting personality insights. Always respond with valid JSON only."
|
||||||
|
},
|
||||||
|
{ role: "user", content: analysisPrompt }
|
||||||
|
],
|
||||||
|
stream: false,
|
||||||
|
options: {
|
||||||
|
temperature: 0.3, // Lower temperature for more consistent analysis
|
||||||
|
num_predict: 800,
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${ollamaUrl}/api/chat`, {
|
||||||
|
method: "POST",
|
||||||
|
body: JSON.stringify(analysisRequest),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
throw new Error(`Analysis request failed: ${response.statusText}`);
|
||||||
|
}
|
||||||
|
|
||||||
|
const analysisResponse: OllamaChatResponse = await response.json();
|
||||||
|
|
||||||
|
try {
|
||||||
|
// Parse the JSON response
|
||||||
|
const analysis: InteractionAnalysis = JSON.parse(analysisResponse.message.content.trim());
|
||||||
|
return analysis;
|
||||||
|
} catch (parseError) {
|
||||||
|
console.error("Failed to parse analysis JSON:", analysisResponse.message.content);
|
||||||
|
// Return default analysis if parsing fails
|
||||||
|
return {
|
||||||
|
sentiment: 'neutral',
|
||||||
|
topics: [],
|
||||||
|
personalityObservations: [],
|
||||||
|
runningGagUpdates: [],
|
||||||
|
relationshipUpdates: [],
|
||||||
|
interestMentions: [],
|
||||||
|
backstoryElements: [],
|
||||||
|
memorableQuotes: []
|
||||||
|
};
|
||||||
|
}
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error analyzing interaction: ${error.message}`);
|
||||||
|
return {
|
||||||
|
sentiment: 'neutral',
|
||||||
|
topics: [],
|
||||||
|
personalityObservations: [],
|
||||||
|
runningGagUpdates: [],
|
||||||
|
relationshipUpdates: [],
|
||||||
|
interestMentions: [],
|
||||||
|
backstoryElements: [],
|
||||||
|
memorableQuotes: []
|
||||||
|
};
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get or create user memory profile
|
||||||
|
*/
|
||||||
|
const getUserMemory = async (userFqn: string) => {
|
||||||
|
try {
|
||||||
|
let memory = await prisma.userMemory.findUnique({
|
||||||
|
where: { userFqn: userFqn }
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!memory) {
|
||||||
|
memory = await prisma.userMemory.create({
|
||||||
|
data: {
|
||||||
|
userFqn: userFqn,
|
||||||
|
personalityTraits: stringifyJsonArray([]),
|
||||||
|
runningGags: stringifyJsonArray([]),
|
||||||
|
relationships: stringifyJsonArray([]),
|
||||||
|
interests: stringifyJsonArray([]),
|
||||||
|
backstory: stringifyJsonArray([]),
|
||||||
|
lastInteractionSummary: null,
|
||||||
|
interactionCount: 0,
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
return memory;
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error getting user memory: ${error.message}`);
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Update user memory with new interaction insights
|
||||||
|
*/
|
||||||
|
const updateUserMemory = async (request: MemoryUpdateRequest): Promise<void> => {
|
||||||
|
try {
|
||||||
|
const { userFqn, conversationContent, botResponse, analysis } = request;
|
||||||
|
|
||||||
|
// Get existing memory
|
||||||
|
const existingMemory = await getUserMemory(userFqn);
|
||||||
|
if (!existingMemory) return;
|
||||||
|
|
||||||
|
// Parse existing JSON arrays
|
||||||
|
const existingPersonality = parseJsonArray(existingMemory.personalityTraits);
|
||||||
|
const existingGags = parseJsonArray(existingMemory.runningGags);
|
||||||
|
const existingRelationships = parseJsonArray(existingMemory.relationships);
|
||||||
|
const existingInterests = parseJsonArray(existingMemory.interests);
|
||||||
|
const existingBackstory = parseJsonArray(existingMemory.backstory);
|
||||||
|
|
||||||
|
// Merge new observations with existing ones (avoiding duplicates)
|
||||||
|
const mergeArrays = (existing: string[], newItems: string[]): string[] => {
|
||||||
|
const combined = [...existing, ...newItems];
|
||||||
|
return [...new Set(combined)]; // Remove duplicates
|
||||||
|
};
|
||||||
|
|
||||||
|
// Limit array sizes to prevent memory bloat
|
||||||
|
const limitArray = (arr: string[], maxSize: number = 20): string[] => {
|
||||||
|
return arr.slice(-maxSize); // Keep most recent items
|
||||||
|
};
|
||||||
|
|
||||||
|
const updatedMemory = {
|
||||||
|
personalityTraits: stringifyJsonArray(limitArray(mergeArrays(existingPersonality, analysis.personalityObservations))),
|
||||||
|
runningGags: stringifyJsonArray(limitArray(mergeArrays(existingGags, analysis.runningGagUpdates))),
|
||||||
|
relationships: stringifyJsonArray(limitArray(mergeArrays(existingRelationships, analysis.relationshipUpdates))),
|
||||||
|
interests: stringifyJsonArray(limitArray(mergeArrays(existingInterests, analysis.interestMentions))),
|
||||||
|
backstory: stringifyJsonArray(limitArray(mergeArrays(existingBackstory, analysis.backstoryElements))),
|
||||||
|
lastInteractionSummary: `${analysis.sentiment} conversation about ${analysis.topics.join(', ') || 'general chat'}`,
|
||||||
|
interactionCount: existingMemory.interactionCount + 1,
|
||||||
|
};
|
||||||
|
|
||||||
|
// Update database
|
||||||
|
await prisma.userMemory.update({
|
||||||
|
where: { userFqn: userFqn },
|
||||||
|
data: updatedMemory
|
||||||
|
});
|
||||||
|
|
||||||
|
// Log the interaction for historical reference
|
||||||
|
await prisma.interactionLog.create({
|
||||||
|
data: {
|
||||||
|
userFqn: userFqn,
|
||||||
|
conversationSnapshot: `${userFqn}: ${conversationContent.slice(0, 200)}... | Lexi: ${botResponse.slice(0, 200)}...`,
|
||||||
|
sentiment: analysis.sentiment,
|
||||||
|
extractedTopics: stringifyJsonArray(analysis.topics),
|
||||||
|
memorableQuotes: stringifyJsonArray(analysis.memorableQuotes),
|
||||||
|
botEmotionalState: generateEmotionalState(analysis),
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
console.log(`Updated memory for ${userFqn}: ${analysis.personalityObservations.join(', ')}`);
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error updating user memory: ${error.message}`);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generate how the bot should "feel" about this interaction
|
||||||
|
*/
|
||||||
|
const generateEmotionalState = (analysis: InteractionAnalysis): string => {
|
||||||
|
const { sentiment, relationshipUpdates } = analysis;
|
||||||
|
|
||||||
|
if (sentiment === 'teasing') return 'playfully_hurt';
|
||||||
|
if (sentiment === 'flirty') return 'flustered';
|
||||||
|
if (sentiment === 'aggressive') return 'sad';
|
||||||
|
if (relationshipUpdates.some(rel => rel.includes('hurt') || rel.includes('mean'))) return 'hurt_feelings';
|
||||||
|
if (relationshipUpdates.some(rel => rel.includes('cute') || rel.includes('sweet'))) return 'happy';
|
||||||
|
return 'neutral';
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generate memory context for system prompt
|
||||||
|
*/
|
||||||
|
const generateMemoryContext = async (userFqn: string): Promise<string> => {
|
||||||
|
try {
|
||||||
|
const memory = await getUserMemory(userFqn);
|
||||||
|
if (!memory || memory.interactionCount === 0) {
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
|
||||||
|
let context = `\n\n--- User Memory for ${userFqn} ---\n`;
|
||||||
|
|
||||||
|
const personalityTraits = parseJsonArray(memory.personalityTraits);
|
||||||
|
const runningGags = parseJsonArray(memory.runningGags);
|
||||||
|
const relationships = parseJsonArray(memory.relationships);
|
||||||
|
const interests = parseJsonArray(memory.interests);
|
||||||
|
const backstory = parseJsonArray(memory.backstory);
|
||||||
|
|
||||||
|
if (personalityTraits.length > 0) {
|
||||||
|
context += `Personality: ${personalityTraits.join(', ')}\n`;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (runningGags.length > 0) {
|
||||||
|
context += `Running gags: ${runningGags.join(', ')}\n`;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (relationships.length > 0) {
|
||||||
|
context += `Our relationship: ${relationships.join(', ')}\n`;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (interests.length > 0) {
|
||||||
|
context += `Interests: ${interests.join(', ')}\n`;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (backstory.length > 0) {
|
||||||
|
context += `Background: ${backstory.join(', ')}\n`;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (memory.lastInteractionSummary) {
|
||||||
|
context += `Last time we talked: ${memory.lastInteractionSummary}\n`;
|
||||||
|
}
|
||||||
|
|
||||||
|
context += `Total conversations: ${memory.interactionCount}`;
|
||||||
|
|
||||||
|
return context;
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error generating memory context: ${error.message}`);
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
export {
|
||||||
|
analyzeInteraction,
|
||||||
|
updateUserMemory,
|
||||||
|
getUserMemory,
|
||||||
|
generateMemoryContext,
|
||||||
|
parseJsonArray,
|
||||||
|
stringifyJsonArray,
|
||||||
|
};
|
159
src/util.ts
159
src/util.ts
@ -2,6 +2,8 @@ import striptags from "striptags";
|
|||||||
import { prisma } from "./main.js";
|
import { prisma } from "./main.js";
|
||||||
import { envConfig } from "./main.js";
|
import { envConfig } from "./main.js";
|
||||||
import { Notification } from "../types.js";
|
import { Notification } from "../types.js";
|
||||||
|
import { OllamaChatRequest, OllamaChatResponse, PostAncestorsForModel } from "../types.js";
|
||||||
|
|
||||||
|
|
||||||
const trimInputData = (input: string): string => {
|
const trimInputData = (input: string): string => {
|
||||||
const strippedInput = striptags(input);
|
const strippedInput = striptags(input);
|
||||||
@ -98,11 +100,168 @@ const selectRandomEmoji = (emojiList: string[]) => {
|
|||||||
return emojiList[Math.floor(Math.random() * emojiList.length)];
|
return emojiList[Math.floor(Math.random() * emojiList.length)];
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const selectRandomEmojis = (emojiList: string[], count: number = 20): string[] => {
|
||||||
|
if (emojiList.length <= count) return emojiList;
|
||||||
|
|
||||||
|
const shuffled = [...emojiList].sort(() => 0.5 - Math.random());
|
||||||
|
return shuffled.slice(0, count);
|
||||||
|
};
|
||||||
|
|
||||||
|
const isLLMRefusal = (response: string): boolean => {
|
||||||
|
const refusalPatterns = [
|
||||||
|
/i can't|i cannot|unable to|i'm not able to/i,
|
||||||
|
/i don't feel comfortable/i,
|
||||||
|
/i'm not comfortable/i,
|
||||||
|
/i shouldn't|i won't/i,
|
||||||
|
/that's not something i can/i,
|
||||||
|
/i'm not programmed to/i,
|
||||||
|
/i'm an ai (assistant|language model)/i,
|
||||||
|
/as an ai/i,
|
||||||
|
/i apologize, but/i,
|
||||||
|
/i must decline/i,
|
||||||
|
/that would be inappropriate/i,
|
||||||
|
/i'm not supposed to/i,
|
||||||
|
/i'd rather not/i,
|
||||||
|
/i prefer not to/i,
|
||||||
|
/against my guidelines/i,
|
||||||
|
/violates my programming/i,
|
||||||
|
];
|
||||||
|
|
||||||
|
const normalizedResponse = response.toLowerCase().trim();
|
||||||
|
|
||||||
|
// Check if response is too short (likely a refusal)
|
||||||
|
if (normalizedResponse.length < 20) return true;
|
||||||
|
|
||||||
|
// Check for refusal patterns
|
||||||
|
return refusalPatterns.some(pattern => pattern.test(normalizedResponse));
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Summarize a long conversation thread to reduce context length
|
||||||
|
*/
|
||||||
|
const summarizeConversationHistory = async (
|
||||||
|
conversationHistory: PostAncestorsForModel[]
|
||||||
|
): Promise<string> => {
|
||||||
|
const { ollamaUrl, ollamaModel } = envConfig;
|
||||||
|
|
||||||
|
if (conversationHistory.length === 0) return "";
|
||||||
|
|
||||||
|
// Create a concise thread representation
|
||||||
|
const threadText = conversationHistory
|
||||||
|
.map(post => `${post.account_fqn}: ${post.plaintext_content}`)
|
||||||
|
.join('\n');
|
||||||
|
|
||||||
|
const summarizePrompt = `Summarize this conversation thread in 2-3 sentences, focusing on the main topics discussed and the overall tone/mood. Keep it brief but capture the essential context:
|
||||||
|
|
||||||
|
${threadText}
|
||||||
|
|
||||||
|
Summary:`;
|
||||||
|
|
||||||
|
try {
|
||||||
|
const summarizeRequest: OllamaChatRequest = {
|
||||||
|
model: ollamaModel,
|
||||||
|
messages: [
|
||||||
|
{
|
||||||
|
role: "system",
|
||||||
|
content: "You are excellent at creating concise, informative summaries. Keep summaries under 150 words and focus on key topics and relationships between participants."
|
||||||
|
},
|
||||||
|
{ role: "user", content: summarizePrompt }
|
||||||
|
],
|
||||||
|
stream: false,
|
||||||
|
options: {
|
||||||
|
temperature: 0.2, // Low temperature for consistent summaries
|
||||||
|
num_predict: 200,
|
||||||
|
num_ctx: 4096, // Smaller context for summarization
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
const response = await fetch(`${ollamaUrl}/api/chat`, {
|
||||||
|
method: "POST",
|
||||||
|
body: JSON.stringify(summarizeRequest),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) {
|
||||||
|
console.error(`Summary request failed: ${response.statusText}`);
|
||||||
|
return `Previous conversation with ${conversationHistory.length} messages about various topics.`;
|
||||||
|
}
|
||||||
|
|
||||||
|
const summaryResponse: OllamaChatResponse = await response.json();
|
||||||
|
return summaryResponse.message.content.trim();
|
||||||
|
|
||||||
|
} catch (error: any) {
|
||||||
|
console.error(`Error summarizing conversation: ${error.message}`);
|
||||||
|
return `Previous conversation with ${conversationHistory.length} messages.`;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Decide whether to summarize based on thread length and complexity
|
||||||
|
*/
|
||||||
|
const shouldSummarizeThread = (conversationHistory: PostAncestorsForModel[]): boolean => {
|
||||||
|
const SUMMARY_THRESHOLD = 15;
|
||||||
|
|
||||||
|
if (conversationHistory.length < SUMMARY_THRESHOLD) return false;
|
||||||
|
|
||||||
|
// Additional heuristics could be added here:
|
||||||
|
// - Total character count
|
||||||
|
// - Average message length
|
||||||
|
// - Time span of conversation
|
||||||
|
|
||||||
|
return true;
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Process conversation history - either use full context or summarized version
|
||||||
|
*/
|
||||||
|
const processConversationHistory = async (
|
||||||
|
conversationHistory: PostAncestorsForModel[]
|
||||||
|
): Promise<string> => {
|
||||||
|
if (!shouldSummarizeThread(conversationHistory)) {
|
||||||
|
// Use full context for short threads
|
||||||
|
return conversationHistory
|
||||||
|
.map(post =>
|
||||||
|
`${post.account_fqn} (to ${post.mentions.join(", ")}): ${post.plaintext_content}`
|
||||||
|
)
|
||||||
|
.join('\n');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Keep the last few messages in full detail + summary of earlier messages
|
||||||
|
const KEEP_RECENT_COUNT = 5;
|
||||||
|
const recentMessages = conversationHistory.slice(-KEEP_RECENT_COUNT);
|
||||||
|
const olderMessages = conversationHistory.slice(0, -KEEP_RECENT_COUNT);
|
||||||
|
|
||||||
|
let contextString = "";
|
||||||
|
|
||||||
|
if (olderMessages.length > 0) {
|
||||||
|
const summary = await summarizeConversationHistory(olderMessages);
|
||||||
|
contextString += `Earlier conversation summary: ${summary}\n\n`;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (recentMessages.length > 0) {
|
||||||
|
contextString += "Recent messages:\n";
|
||||||
|
contextString += recentMessages
|
||||||
|
.map(post =>
|
||||||
|
`${post.account_fqn} (to ${post.mentions.join(", ")}): ${post.plaintext_content}`
|
||||||
|
)
|
||||||
|
.join('\n');
|
||||||
|
}
|
||||||
|
|
||||||
|
return contextString;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
export {
|
export {
|
||||||
alreadyRespondedTo,
|
alreadyRespondedTo,
|
||||||
selectRandomEmoji,
|
selectRandomEmoji,
|
||||||
|
selectRandomEmojis,
|
||||||
|
isLLMRefusal,
|
||||||
trimInputData,
|
trimInputData,
|
||||||
recordPendingResponse,
|
recordPendingResponse,
|
||||||
isFromWhitelistedDomain,
|
isFromWhitelistedDomain,
|
||||||
shouldContinue,
|
shouldContinue,
|
||||||
|
summarizeConversationHistory,
|
||||||
|
shouldSummarizeThread,
|
||||||
|
processConversationHistory,
|
||||||
};
|
};
|
||||||
|
207
types.d.ts
vendored
207
types.d.ts
vendored
@ -158,48 +158,215 @@ interface PleromaEmojiMetadata {
|
|||||||
tags: string[];
|
tags: string[];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
interface ReactionRequest {
|
||||||
|
name: string; // emoji name without colons
|
||||||
|
}
|
||||||
|
|
||||||
|
interface ReactionResponse {
|
||||||
|
name: string;
|
||||||
|
count: number;
|
||||||
|
me: boolean;
|
||||||
|
url?: string;
|
||||||
|
static_url?: string;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Experimental settings, I wouldn't recommend messing with these if you don't know how they work (I don't either)
|
* Experimental settings, I wouldn't recommend messing with these if you don't know how they work (I don't either)
|
||||||
*/
|
*/
|
||||||
export interface OllamaConfigOptions {
|
export interface OllamaConfigOptions {
|
||||||
/**
|
/**
|
||||||
* Number of tokens guaranteed to be kept in memory during response generation. Higher values leave less
|
* Number of tokens guaranteed to be kept in memory during response generation.
|
||||||
* possible room for num_ctx
|
* Higher values leave less room for num_ctx. Used to preserve important context.
|
||||||
|
* Default: 0, Range: 0-512
|
||||||
*/
|
*/
|
||||||
num_keep?: number;
|
num_keep?: number;
|
||||||
seed?: number;
|
|
||||||
/**
|
/**
|
||||||
* Sets maximum of tokens in the response
|
* Random seed for reproducible outputs. Same seed + same inputs = same output.
|
||||||
|
* Default: -1 (random), Range: any integer
|
||||||
|
*/
|
||||||
|
seed?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Maximum number of tokens to generate in the response. Controls response length.
|
||||||
|
* Default: 128, Range: 1-4096+ (model dependent)
|
||||||
*/
|
*/
|
||||||
num_predict?: number;
|
num_predict?: number;
|
||||||
top_k?: number;
|
|
||||||
top_p?: number;
|
|
||||||
min_p?: number;
|
|
||||||
typical_p?: number;
|
|
||||||
repeat_last_n?: number;
|
|
||||||
/**
|
/**
|
||||||
* How close of a response should the response be to the original prompt - lower = more focused response
|
* Limits token selection to top K most probable tokens. Reduces randomness.
|
||||||
|
* Default: 40, Range: 1-100 (higher = more diverse)
|
||||||
|
*/
|
||||||
|
top_k?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Nucleus sampling - cumulative probability cutoff for token selection.
|
||||||
|
* Default: 0.9, Range: 0.0-1.0 (lower = more focused)
|
||||||
|
*/
|
||||||
|
top_p?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Alternative to top_p - minimum probability threshold for tokens.
|
||||||
|
* Default: 0.0, Range: 0.0-1.0 (higher = more selective)
|
||||||
|
*/
|
||||||
|
min_p?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Typical sampling - targets tokens with "typical" probability mass.
|
||||||
|
* Default: 1.0 (disabled), Range: 0.0-1.0 (lower = less random)
|
||||||
|
*/
|
||||||
|
typical_p?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Number of previous tokens to consider for repetition penalty.
|
||||||
|
* Default: 64, Range: 0-512
|
||||||
|
*/
|
||||||
|
repeat_last_n?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Randomness/creativity control. Lower = more deterministic, higher = more creative.
|
||||||
|
* Default: 0.8, Range: 0.0-2.0 (sweet spot: 0.1-1.2)
|
||||||
*/
|
*/
|
||||||
temperature?: number;
|
temperature?: number;
|
||||||
repeat_penalty?: number;
|
|
||||||
presence_penalty?: number;
|
|
||||||
frequency_penalty?: number;
|
|
||||||
mirostat?: number;
|
|
||||||
mirostat_tau?: number;
|
|
||||||
mirostat_eta?: number;
|
|
||||||
penalize_newline?: boolean;
|
|
||||||
stop?: string[];
|
|
||||||
numa?: boolean;
|
|
||||||
/**
|
/**
|
||||||
* Number of tokens for the prompt to keep in memory for the response, minus the value of num_keep
|
* Penalty for repeating tokens. Higher values reduce repetition.
|
||||||
|
* Default: 1.1, Range: 0.0-2.0 (1.0 = no penalty)
|
||||||
|
*/
|
||||||
|
repeat_penalty?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Penalty for using tokens that have already appeared (OpenAI-style).
|
||||||
|
* Default: 0.0, Range: -2.0 to 2.0
|
||||||
|
*/
|
||||||
|
presence_penalty?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Penalty proportional to token frequency in text (OpenAI-style).
|
||||||
|
* Default: 0.0, Range: -2.0 to 2.0
|
||||||
|
*/
|
||||||
|
frequency_penalty?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Enables Mirostat sampling algorithm (0=disabled, 1=v1, 2=v2).
|
||||||
|
* Default: 0, Range: 0, 1, or 2
|
||||||
|
*/
|
||||||
|
mirostat?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Target entropy for Mirostat. Controls coherence vs creativity balance.
|
||||||
|
* Default: 5.0, Range: 0.0-10.0
|
||||||
|
*/
|
||||||
|
mirostat_tau?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Learning rate for Mirostat. How quickly it adapts.
|
||||||
|
* Default: 0.1, Range: 0.001-1.0
|
||||||
|
*/
|
||||||
|
mirostat_eta?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Apply penalty to newline tokens to control formatting.
|
||||||
|
* Default: true
|
||||||
|
*/
|
||||||
|
penalize_newline?: boolean;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Array of strings that will stop generation when encountered.
|
||||||
|
* Default: [], Example: ["\n", "User:", "###"]
|
||||||
|
*/
|
||||||
|
stop?: string[];
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Enable NUMA (Non-Uniform Memory Access) optimization.
|
||||||
|
* Default: false (Linux systems may benefit from true)
|
||||||
|
*/
|
||||||
|
numa?: boolean;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Context window size - total tokens for prompt + response.
|
||||||
|
* Default: 2048, Range: 512-32768+ (model dependent, affects memory usage)
|
||||||
*/
|
*/
|
||||||
num_ctx?: number;
|
num_ctx?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Batch size for prompt processing. Higher = faster but more memory.
|
||||||
|
* Default: 512, Range: 1-2048
|
||||||
|
*/
|
||||||
num_batch?: number;
|
num_batch?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Number of GPU layers to offload. -1 = auto, 0 = CPU only.
|
||||||
|
* Default: -1, Range: -1 to model layer count
|
||||||
|
*/
|
||||||
num_gpu?: number;
|
num_gpu?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Primary GPU device ID for multi-GPU setups.
|
||||||
|
* Default: 0, Range: 0 to (GPU count - 1)
|
||||||
|
*/
|
||||||
main_gpu?: number;
|
main_gpu?: number;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Optimize for low VRAM usage at cost of speed.
|
||||||
|
* Default: false
|
||||||
|
*/
|
||||||
low_vram?: boolean;
|
low_vram?: boolean;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Only load vocabulary, skip weights. For tokenization only.
|
||||||
|
* Default: false
|
||||||
|
*/
|
||||||
vocab_only?: boolean;
|
vocab_only?: boolean;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Use memory mapping for model files (faster loading).
|
||||||
|
* Default: true
|
||||||
|
*/
|
||||||
use_mmap?: boolean;
|
use_mmap?: boolean;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Lock model in memory to prevent swapping.
|
||||||
|
* Default: false (enable for consistent performance)
|
||||||
|
*/
|
||||||
use_mlock?: boolean;
|
use_mlock?: boolean;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Number of CPU threads for inference.
|
||||||
|
* Default: auto-detected, Range: 1 to CPU core count
|
||||||
|
*/
|
||||||
num_thread?: number;
|
num_thread?: number;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
export interface UserMemory {
|
||||||
|
id: number;
|
||||||
|
userFqn: string;
|
||||||
|
personalityTraits: string[]; // ["teases_bot", "sarcastic", "friendly", "joker"]
|
||||||
|
runningGags: string[]; // ["claims_to_shit_pants", "pretends_to_be_cat", "always_hungry"]
|
||||||
|
relationships: string[]; // ["hurt_my_feelings_once", "called_me_cute", "protective_of_me"]
|
||||||
|
interests: string[]; // ["programming", "anime", "cooking"]
|
||||||
|
backstory: string[]; // ["works_at_tech_company", "has_three_cats", "lives_in_california"]
|
||||||
|
lastInteractionSummary: string; // Brief summary of last conversation
|
||||||
|
interactionCount: number;
|
||||||
|
lastUpdated: DateTime;
|
||||||
|
createdAt: DateTime;
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface InteractionAnalysis {
|
||||||
|
sentiment: 'positive' | 'negative' | 'neutral' | 'teasing' | 'flirty' | 'aggressive';
|
||||||
|
topics: string[]; // Extracted topics from conversation
|
||||||
|
personalityObservations: string[]; // New traits observed
|
||||||
|
runningGagUpdates: string[]; // New or updated running gags
|
||||||
|
relationshipUpdates: string[]; // How relationship with bot changed
|
||||||
|
interestMentions: string[]; // Interests/hobbies mentioned
|
||||||
|
backstoryElements: string[]; // New biographical info (real or fake)
|
||||||
|
memorableQuotes: string[]; // Funny or notable things they said
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface MemoryUpdateRequest {
|
||||||
|
userFqn: string;
|
||||||
|
conversationContent: string;
|
||||||
|
botResponse: string;
|
||||||
|
analysis: InteractionAnalysis;
|
||||||
|
}
|
Reference in New Issue
Block a user